MATH 202: VECTOR CALCULUS HOMEWORK FOR MONDAY WEEK 13

Problem 1. CAES 9.16.1.
Problem 2. Throughout this problem, let $\Phi:[0,1] \rightarrow \mathbb{R}^{2}$ denote a singular 1-cube which is also a simple closed curve (i.e., $\Phi(0)=\Phi(1)$ and $\Phi(s) \neq \Phi(t)$ for any other $s \neq t)$.
(a) Suppose that the image of Φ does not enclose the origin. Use Green's theorem to determine the value of

$$
\int_{\Phi} \frac{x d x+y d y}{x^{2}+y^{2}} .
$$

(b) Now suppose that the image of Φ does enclose the origin. Can you use Green's theorem to determine the above integral? Explain why or why not.
(c) Let $\Phi_{1}, \Phi_{2}:[0,1] \rightarrow \mathbb{R}^{2}$ be simple closed curves which both enclose the origin, are both oriented counterclockwise, and do not intersect. Show that

$$
\int_{\Phi_{1}} \frac{x d x+y d y}{x^{2}+y^{2}}=\int_{\Phi_{2}} \frac{x d x+y d y}{x^{2}+y^{2}} .
$$

(d) Use the result of part (c) to determine the value of

$$
\int_{\Phi} \frac{x d x+y d y}{x^{2}+y^{2}}
$$

where Φ is any simple closed curve that encloses the origin.

