MATH 202: VECTOR CALCULUS

FRIDAY WEEK 8 HANDOUT

Problem 1. Let D be the cylindrical shell about the z-axis with inner radius 1 , outer radius 2 , and $0 \leq z \leq 1$. In this problem, we consider the integral

$$
\int_{D} x^{2}+y^{2}
$$

(a) Make a sketch of D.
(b) Find a region K such that $\Psi(K)=D$ for Ψ the cylindrical change of coordinates.
(c) Compute $\left|\operatorname{det} \Psi^{\prime}\right|$.
(d) Convert the integral $\int_{K}(f \circ \Psi)\left|\operatorname{det} \Psi^{\prime}\right|$ into a multiple integral where $f(x, y, z)=x^{2}+y^{2}$.
(e) Use the above expression and change of variables theorem to compute $\int_{D} x^{2}+y^{2}$. Are there any subtleties with the hypotheses of COV?
Problem 2. Let $D=B_{3}(1) \backslash C$ where $C=\left\{(x, y, z) \mid z^{2} \geq x^{2}+y^{2}\right\}$. In this problem, we consider the integral

$$
\int_{D} \sqrt{x^{2}+y^{2}+z^{2}}
$$

(a) Make a sketch of D.
(b) Find a region K such that $\Xi(K)=D$ for Ξ the spherical change of coordinates.
(c) Compute $\left|\operatorname{det} \Xi^{\prime}\right|$.
(d) Convert the integral $\int_{K}(g \circ \Xi) \mid$ det $\Xi^{\prime} \mid$ into a multiple integral where $g(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
(e) Use the above expression and change of variables theorem to compute $\int_{D} \sqrt{x^{2}+y^{2}+z^{2}}$. Are there any subtleties with the hypotheses of COV?
Problem 3 (CAES 6.7.8). A closed ball of radius b centered at the origin has density $\delta(x, y, z)=$ $e^{-\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$. Find its mass, $\int_{B_{3}(b)} \delta$.

