MATH 202: VECTOR CALCULUS FRIDAY WEEK 8 HANDOUT

Problem 1. Let *D* be the cylindrical shell about the *z*-axis with inner radius 1, outer radius 2, and $0 \le z \le 1$. In this problem, we consider the integral

$$\int_D x^2 + y^2.$$

- (a) Make a sketch of *D*.
- (b) Find a region K such that $\Psi(K) = D$ for Ψ the cylindrical change of coordinates.
- (c) Compute $|\det \Psi'|$.
- (d) Convert the integral $\int_K (f \circ \Psi) |\det \Psi'|$ into a multiple integral where $f(x, y, z) = x^2 + y^2$.
- (e) Use the above expression and change of variables theorem to compute $\int_D x^2 + y^2$. Are there any subtleties with the hypotheses of COV?

Problem 2. Let $D = B_3(1) \setminus C$ where $C = \{(x, y, z) \mid z^2 \ge x^2 + y^2\}$. In this problem, we consider the integral

$$\int_D \sqrt{x^2 + y^2 + z^2}$$

- (a) Make a sketch of *D*.
- (b) Find a region *K* such that $\Xi(K) = D$ for Ξ the spherical change of coordinates.
- (c) Compute $|\det \Xi'|$.
- (d) Convert the integral $\int_K (g \circ \Xi) |\det \Xi'|$ into a multiple integral where $g(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
- (e) Use the above expression and change of variables theorem to compute $\int_D \sqrt{x^2 + y^2 + z^2}$. Are there any subtleties with the hypotheses of COV?

Problem 3 (CAES 6.7.8). A closed ball of radius *b* centered at the origin has density $\delta(x, y, z) = e^{-(x^2+y^2+z^2)^{3/2}}$. Find its mass, $\int_{B_2(b)} \delta$.