MATH 202: VECTOR CALCULUS WEDNESDAY WEEK 4 HANDOUT

Problem 1. For the following functions, determine all second-order partial derivatives:
(a) $f(x, y)=\cos (x y)$,
(b) $g(x, y, z)=e^{a x} \sin (y)+e^{b x} \cos (z)$.

Problem 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called harmonic :iff $\Delta f=0$ for $\Delta=D_{11}+D_{22}+\cdots+D_{n n}$ the Laplacian operator.
(a) Is $f(x, y, z)=x^{2}+y^{2}-2 z^{2}$ harmonic? What about $f(x, y, z)=x^{2}-y^{2}+z^{2}$?
(b) Give an example of a harmonic function of n variables, and verify that your example is correct.

Problem 3. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called radial :iff $f=f \circ T$ for all orthognal transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The value of such a function at $x \in \mathbb{R}^{n}$ only depends on $|x|$ (but we will not prove this). Show that the Laplacian of a radial function is radial.
Problem 4. Check that $R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is an orthogonal matrix. Show that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is harmonic, then $f \circ R_{\theta}$ is harmonic.

