MATH 202: VECTOR CALCULUS MONDAY WEEK 4 HANDOUT

Problem 1. Consider the function $f(x, y)=\frac{x^{2}-y}{y+1}$ on $\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq-1\right\}$. At which (a, b) is f differentiable? What is $f^{\prime}(a, b)$?
Problem 2. Consider the function

$$
g(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

At which (a, b) is g differentiable? What is $g^{\prime}(a, b)$?
Problem 3. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=x^{2} \sin \frac{1}{x}$ if $x \neq 0$, and $h(0)=0$. Show that $h^{\prime}(x)$ exists for all x but that h^{\prime} is dincontinuous at 0 . [It follows that differentiability does not imply that a function has continuous derivatives!]

