## MATH 202: VECTOR CALCULUS FRIDAY WEEK 4 HANDOUT

Problem 1. Find an equation for the plane tangent to the graph of $z=4 \cos (x y)$ at the point ( $\pi / 3,1,2$ ).
Problem 2. Find an equation for the tangent hyperplane tangent to the 4 -dimensional parabaloid $x_{5}=10-\left(x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+x_{4}^{2}\right)$ at the point $(2,-1,1,3,-8)$.
Problem 3. Suppose that you have the following information concerning a differentiable function $f$ :

$$
f(2,3)=12, \quad f(1.98,3)=12.1, \quad f(2,3.01)=12.2 .
$$

(a) Give an approximate equation for the plane tangent to the graph of $f$ at $(2,3,12)$.
(b) Use the result of part (a) to estimate $f(1.98,2.98)$.

Problem 4. Let

$$
f(x, y)= \begin{cases}x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Find $D_{1} f(x, y)$ and $D_{2} f(x, y)$ for $(x, y) \neq(0,0)$. Find the partial derivatives $D_{1}(0, y)$ and $D_{2}(x, 0)$. Find the values of $D_{12} f(0,0)$ and $D_{21} f(0,0)$. What gives?

