MATH 202: VECTOR CALCULUS MONDAY WEEK 3 HANDOUT

Question 1. How should we define the notations $f(h)=o(g(h))$ and $f(h)=\mathcal{O}(g(h))$ for f, g : $B\left(0_{n}, \varepsilon\right) \rightarrow \mathbb{R}^{m}$?
Problem 2. Continutiy of a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and compactness of $S^{n-1}:=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$ imply that there is a positive constant c such that $\left|T\left(h_{0}\right)\right| \leq c$ for $h_{0} \in S^{n-1}$. The smallest such c is attained (extreme value theorem) and is called the operator norm of T, denoted $\|T\|$. Check that $\|\|$ is absolute homogeneous, subadditive, and positive definite. [Fact: $\| T \|$ is the square root of the absolute value of the largest eigenvalue of $T T^{\top}$.]
Problem 3. Check the absorption rules for the compositions $\varphi \circ \psi$ and $\psi \circ \varphi$ of the functions $\varphi(x)=$ $x^{3}, \psi(x)=x \sin (1 / x)$.

