MATH 202: VECTOR CALCULUS FRIDAY WEEK 2 HANDOUT

Problem 1. Determine the area of the triangle in \mathbb{R}^{3} with vertices $(1,1,1),(-1,0,-1),(0,2,1)$.
Problem 2. Define the scalar triple product of three vectors $u, v, w \in \mathbb{R}^{3}$ to be $u \cdot(v \times w)$. Prove that $|u \cdot(v \times w)|$ is the volume of the parallelipiped spanned by u, v, w.
Problem 3. Let $A \subseteq \mathbb{R}^{n}$. Prove that if $f \in \mathcal{C}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and $C \subseteq \mathbb{R}^{m}$ is closed, then $f^{-1}(C)$ is closed.
Problem 4. Is the preimage of a compact set under a continuous mapping compact? What does your answer tell you about the set of solutions to the equation $f(x)=0$ when $f \in \mathcal{C}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$?
Problem 5. Use the fact that $21375,38798,34162,40223$, and 79154 are all divisible by 19 to show that

$$
\left(\begin{array}{lllll}
2 & 1 & 3 & 7 & 5 \\
3 & 8 & 7 & 9 & 8 \\
3 & 4 & 1 & 6 & 2 \\
4 & 0 & 2 & 2 & 3 \\
7 & 9 & 1 & 5 & 4
\end{array}\right)
$$

is divisible by 19 without directly evaulating the determinant. Generalize this observation to all square matrices with entries single digit natural numbers.

