MATH 202: VECTOR CALCULUS FRIDAY WEEK 1 HANDOUT

Problem 1. Consider the sequences

$$
\left\{x_{\nu}=\left(\frac{\nu^{2}+\nu-1}{3 \nu^{2}+2}, \frac{\nu-1}{\nu+1}\right)\right\}
$$

in \mathbb{R}^{2} and the sequence

$$
\left\{y_{\nu}=\left(1+(-1)^{\nu}, 1 / \nu, 1+1 / \nu\right)\right\}
$$

in \mathbb{R}^{3}. Do these sequences converge? Prove your assertion.
Problem 2. Suppose $\left\{x_{\nu}\right\}$ is a sequence in \mathbb{R}^{2} that converges to a point $p \in \mathbb{R}^{2}$. Let $\theta(x)$ denote the angle between x and the positive horizontal axis. Does the sequence $\left\{\theta\left(x_{\nu}\right)\right\}$ converge? Give as complete an answer as you can.
Problem 3. For the following two functions on \mathbb{R}^{2}, either find $b \in \mathbb{R}$ such that the function is continuous at 0 or prove that there is no b for which the function is continuous at 0 :

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x^{4}-y^{4}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq 0, \\
b & \text { if }(x, y)=0,
\end{array} \quad g(x, y)= \begin{cases}\frac{x^{2}-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq 0 \\
b & \text { if }(x, y)=0\end{cases}\right.
$$

