MATH 202: VECTOR CALCULUS FRIDAY WEEK 1 HANDOUT

Problem 1. Consider the sequences

$$\{x_{\nu} = \left(\frac{\nu^2 + \nu - 1}{3\nu^2 + 2}, \frac{\nu - 1}{\nu + 1}\right)\}\$$

in \mathbb{R}^2 and the sequence

$$\{y_{\nu} = (1 + (-1)^{\nu}, 1/\nu, 1 + 1/\nu)\}$$

in \mathbb{R}^3 . Do these sequences converge? Prove your assertion.

Problem 2. Suppose $\{x_{\nu}\}$ is a sequence in \mathbb{R}^2 that converges to a point $p \in \mathbb{R}^2$. Let $\theta(x)$ denote the angle between x and the positive horizontal axis. Does the sequence $\{\theta(x_{\nu})\}$ converge? Give as complete an answer as you can.

Problem 3. For the following two functions on \mathbb{R}^2 , either find $b \in \mathbb{R}$ such that the function is continuous at 0 or prove that there is no *b* for which the function is continuous at 0:

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{(x^2 + y^2)^2} & \text{if } (x,y) \neq 0, \\ b & \text{if } (x,y) = 0, \end{cases} \qquad g(x,y) = \begin{cases} \frac{x^2 - y^3}{x^2 + y^2} & \text{if } (x,y) \neq 0, \\ b & \text{if } (x,y) = 0. \end{cases}$$