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Electrical engineers employ some methods of linear algebra, derived from Homology Theory, to 

decompose the flow of current in a complex circuit into two components. The same decomposition can 

be applied to a ‘circuit’ containing nodes representing the candidates in a multicandidate election, con- 

nected by ‘wires’ carrying flows of net voter preference. 

In this case, the cyclic component measures the tendency towards a voters’ paradox, while the cocyclic 

component measures the spreads in the Borda counts. When the cocyclic component is stronger, it masks 

the cycles in the cyclic component, and a voters’ paradox is avoided; we call this ‘Borda Dominance’. 

Methods based on this decomposition provide a host of necessary and sufficient conditions for various 

degrees of transitivity of majority preference. Sen’s well-known sufficiency theorem, together with some 

stronger theorems, are shown to depend upon a strong ‘double’ form of the masking phenomenon. This 

mathematically natural generalization of Sen’s key hypothesis is revealed to be equivalent to a new, quan- 

titative form of transitivity. 

Because the approach provides fresh insight into the underlying source of the voters’ paradox, it ap- 

pears to represent a promising new tool in social choice theory, with applications beyond those in the 

current paper. 

Key words: Voters’ paradox; Borda count; social choice. 

1. Introduction 

The linear algebra of directed graphs is beginning to look promising as an 

analytical tool in social choice theory. When applied to the voters’ paradox, the 

methods yield proofs of Sen’s Theorem, Sen (1966), and some closely related 

results. Fortunately, the theorem statements, proofs, and (to a more limited extent) 

intuitions can be divorced from the underlying linear algebra through the introduc- 

tion of the derived concepts of spin and the Borda count. 

That is the approach of this paper, the first of a projected series of three. We ad- 

dress the material at an intermediate level of mathematical sophistication, reducing 

the proofs of a number of theorems, of interest to those in the field of social choice, 

to elementary algebra. While this treatment widens the potential audience, there is 

0165-4896/91/$03.50 0 1991-Elsevier Science Publishers B.V. All rights reserved 



188 W.S. Zwicker / The voters’ paradox 

some loss of intuitive content. A second paper, intended primarily for mathemati- 

cians, will explore the foundations of the theory, which lie in an application of the 

boundary map of homology theory. The final paper will draw conclusions of a more 

normative nature, and will presume very little mathematics. 

We have made several references to numbered comments in the appendix (called 

‘Mathematical comments’ and denoted MC 1, MC 2, etc.) which do refer to the 

underlying linear algebra. These may be skipped without damage to continuity or 

completeness. 

Sen’s Theorem provides conditions on a profile 4?~ that guarantee that there is no 

voters’ paradox. We show that the pattern of pairwise majority preferences (that is, 

the numerical margin, for each pair of alternatives by which one is preferred over 

the other) can be naturally decomposed into two parts: a part that measures the 

tendency towards a cycling of majorities (voters’ paradox) and that has a magnitude 

determined by a quantity called spin, and a cocyclic part that has a magnitude deter- 

mined by the Borda count totals of the alternatives. 

When the spin is large in relation to the Borda counts, it dominates and results 

in a voters’ paradox, while sufficiently large Borda counts mask the spin, preventing 

the paradox. The flavor of the results can be found by reading the statements of 

Theorem 3, Corollaries 5, 6, 8, and 10, and Theorem 9, which reveal that Sen’s 

Theorem can be interpreted as a ‘Borda-masking’ result. 

To simplify the exposition, we begin by considering only profiles in which all 

preference orders are strict. 

2. Notation and definitions 

Suppose that X is a set (of ‘alternatives’), N is a set (of ‘individuals’), and that 

for each individual ie N we have a strict preference ordering Pi of the set X of 

alternatives. Then the sequence 

Q=(P,:iEN). 

is called a profile of strict preference orders. When 62~ is such a profile and x and 

y are any two alternatives we will let Net,(x>y) denote the following difference: 

Thus, 

and 

I 

the number of individuals the number of individuals 
_ 

. i who have XPi y 1 I j who have YPjX I 

if Net,(x>y)>O, then more individuals prefer x to y than y to x; 

if Net,(x>y)<O, then more individuals prefer y to x than x to y; 

if Net,(x> y) = 0, then equal numbers of individuals prefer x to y 

and y to x. 

We will use a diagram G, called a directed graph, with vertices labelled by the 
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alternatives, and edges arbitrarily assigned orientations (preferred directions). Then, 

in G,, each edge will be labelled by the appropriate net preference Net,(x>y) 

‘flowing’ in the indicated direction. 

For example, if four voters ranked three candidates r, s, and t as follows: 

4 voters have preference order and the fifth has preference order 

, which we will write for now as %=4 

then 

Net,[s>r] =4+1=5 

Net,[r>t]=-4+(+1)=-3, 

producing the G e shown in Fig. 1. 

Such triangular diagrams portray only three alternatives, so in the case that there 

are more than three, they can represent only a piece of the overall situation. 

However, for most of the paper we will only be concerned with properties that apply 

to alternatives three at a time, so most of our diagrams will be triangles, regardless 

of the total number of alternatives. Strictly speaking, then, our notation for such 

triangles ought to be G(s, t, r) or G,(s, t, r), but the context usually obviates the 

need for explicit parameters indicating which specific three alternatives are being 

considered. 

Comment. Had the sr edge originally been oriented in the opposite direction, the 

edge would be labelled Net,(r>,s), which is -Net,(s>r). Hence, in our example 

the same preference for s over r by a margin of 5 would have been indicated by an 

i: 

r 

s 

t 

r 

Netu(r>t) 

s 4 
r 

5 

-3 

3 

t 

G Gu 
Fig. 1. 

Example of a G u 
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orders, and in Section 10 we relate voters’ paradox statements to their equivalent 

transitivity conditions. Also, a new type of transitivity condition (‘transfer of 

preference’) is introduced, and Condorcet winners are discussed. Finally, Section 1 I 
considers parity conditions: their relationship with the original version of Sen’s 

Theorem and with the theorems in this paper. 

3. Intuition and the source of the voters’ paradox 

The key idea underlying this paper is that a G, may be decomposed into two 

components that comprise complementary aspects of the profile %!. Figure 3 is an 

example of this fundamental decomposition, based on the profile 

The cyclic component of any G, is characterized (see MC 1) by having equal 

edge labels, while the cocyclic component is characterized by having edge labels 

that sum to zero. (Note that -5$ + (-7+) + 12+ = 0.) The components are summed 

by adding the corresponding edge labels, so that in the G, below (Fig. 3) 

(5f) + (-7$) = -2, for example. 

The same type of decomposition appears in Harary (1958), for example, where 

it is applied to the flow of current in a circuit. 

Why is this fundamental decomposition important? 

(1) Every profile $?L produces a G, that can be so decomposed. 

(2) The decomposition is unique. 

(3) The cocyclic component can be expressed in terms of the differences in the 

local Borda counts of the three alternatives s, t, and r. (The cyclic component can 

be similarly expressed in terms of a new quantity we call ‘spin’.) 

(4) The cyclic component measures the tendency towards a voters’ paradox. 

l/3 

+ s 

II 

G> cyclic -t 

Component 

l/3 

= s 

G us cocycllc = 

Component 

Fig. 3. 

-2 
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(5) Whether or not there is a voters’ paradox depends on whether the cocyclic 

component is large enough, relative to the cyclic component, to mask the tendency 

towards the paradox that the cyclic component represents. (In the example at the 

beginning of this section, the cocyclic component is large enough to mask the cycle.) 

These points are covered in the next few sections (with the exception of (2), which 

is established in a more general setting in Zwicker (unpublished)-see MC 2). They 

allow us to formulate theorems in Sections 6 and 7 that provide some necessary and 

sufficient conditions for omission, by a profile %!, of all length three voters’ 

paradoxes. These conditions are all comparisons-are the Borda count ‘spreads’ 

(differences) large in comparison with the spin? 

But the power of the fundamental decomposition goes beyond its role at the 

center of such theorems. The decomposition provides an intuitively satisfying 

analysis of the source of the voters’ paradox. 

Why does a cycle of majority preferences strike us as being paradoxical? In large 

part we are surprised because such cycles appear as peculiarly ‘mass’ effects. An in- 

dividual preference order is always transitive and never has such a cycle. So how 

is it possible for cycles and intransitivities to arise from a group of individuals? The 

temptation is to believe that the cycle is a fundamentally collective phenomenon, not 

arising in any individual. 

However, the fundamental decomposition shows that group cycles actually have 

their seeds in individual preference orders. It seems counter-intuitive, yet an in- 

dividual preference order actually has a non-zero cyclic component or tendency 

towards a voters’ paradox. Such a tendency is non-obvious because the cocyclic 

component of an individual preference order is always large enough to mask the 

cycle. Figure 4 shows the decomposition of the individual preference order 

s 

II r . 

t 

Cyclic Component 
(Cycles counter- 
clockwise or 
“positive” ) 

Cocyclic Component An individual 
contribution toG,, 

Fig. 4. 
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The other possible .r 
cqcllc component for 
an individual -l/3 
preference order /I 

(A "negative" component 
cycles clockwise) 

Fig. 5. 

See MC 3 for a comment on the fractional values in Fig. 4. Other preference 

orders produce similar decompositions, but the cyclic component ‘cycles’ in the op- 

posite (clockwise) direction in three out of the six possible preference orders for 

three alternatives (Fig. 5). 

When a group of individuals produce a composite G, by adding their contribu- 

tions together, G, can then be decomposed into a cyclic and a cocyclic compo- 

nent. Recall that a voters’ paradox situation arises precisely when the cyclic 

component is predominant. 

Alternatively, one can separately decompose each individual contribution first. 

Then the individual cyclic contributions can be added, yielding Gwu’s cyclic compo- 

nent, while the individual cocyclic contributions are summed to produce G,‘s 

cocyclic component. This second approach produces the same final decomposition 
as the first. (See MC 2.) 

As individual cyclic components are added, they reinforce each other when they 

are of the same sign, and cancel when of the opposite sign. The composite cyclic 

component is large when there is more reinforcement than cancellation. The in- 

dividual cocyclic contributions similarly may reinforce or cancel (in a somewhat 

more complex way). Thus, a voters’ paradox arises precisely when the amount of 

reinforcement (relative to the amount of cancellation) is greater among the cyclic 

components than among the cocyclic component. 

In other words, each individual ‘vote’ consists of a cycle hidden by a mask. If the 
distribution of the votes falls within certain parameters, the masks tend to kill each 
other off while the cycles reinforce each other. The result is that the cycles (which 
were always present, but hidden) are revealed in the composite situation-the 
voters’ paradox is unmasked. 
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4. Precise notions of spin and Borda count 

In 1781, Jean-Charles de Borda introduced a social welfare function that still re- 

mains in use, and which is now referred to as the Borda count. In Borda’s system 

a designated number of points is awarded to the alternative ranked first by an in- 

dividual, a different amount is awarded to the alternative ranked second, etc. These 

designated amounts are called the weights. For each alternative, the points awarded 

by all the individuals are added up, these sums are then compared, and their relative 

sizes determine the composite preference order. 

Because we are interested in properties that focus on only three alternatives at a 

time, we will use the local version of the Borda count that ignores an individual’s 

preferences among the other alternatives, and only considers relative preference 

among the three. Thus, if the three alternatives under discussion are s, t, and r, we 

will say (for example) that an individual ‘ranks t in second place’ when we actually 

mean ‘in second place among S, t, and r’, as would be the case were s ranked third, 

t ranked fifth, and r ranked sixth. 

For our purposes, it is convenient to use weights of 1 point for a first place finish, 

0 points for a second place finish, and -1 point for each third place finish (recall 

that we are considering only three alternatives at this point). If x is one of the three 

alternatives being considered and %! is a profile we will use x”, to denote x’s Borda 

count, or point total. Notice that 

x$= 
the number of individuals 

1-I 

the number of individuals 

ranking x first * ranking x third I 

When context makes it clear which profile, Q, is being considered, we will drop the 

subscript %. Since x$ actually depends on which three alternatives are being con- 

sidered, we should actually include these alternatives as parameters in the notation 

(x:(x, y,z), for example), but in practice this is not needed. 

Comments. (1) Any two Borda count systems in which the weights are equally 

spaced yield equivalent social welfare functions. The weights in the above system 

are equally spaced, with distances of 1 point, and the highest Borda count ‘wins’. 

A system in which, for example, the weights for first, second, and third place are, 

respectively, 4, 7, and 10 points, and in which the lowest Borda count ‘wins’, would 

always determine the same composite preference order as would the system we are 

using. 

(2) A virtue of the -l,O, 1 weight distribution is that the sum of the points award- 

ed by any individual to the three alternatives s, t, and r, under consideration, is zero. 

It follows easily that the Borda counts sum to zero: 

sB + tYB + rS = 0 (see MC 4). 

Given a profile Q and three alternatives, s, t, and r, we will use M, to denote 
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42’s spin, and define M, to be the sum of the ‘positively circulating net 

preferences’: 

M,=Net,(s>r)+Net,(r>t)+Net,(t>s). 

While we might just as easily used the net preferences circulating in the reverse direc- 

tion (this merely reverses Mql’s sign) consistency again requires that we not switch 

in midstream. Notice that given our original choice of orientation of G, the spin 
M, is exactly the sum of G,‘s edge labels. 

5. The six strict preference orders and their contributions 

There are six possible ways to strictly order three alternatives. Table 1 assigns each 

of these a name and notes, for each, the amount that an individual with the 

preference order would contribute to G%‘s edge labels, to the spin, and to each of 

the three Borda counts. 

Explanation of Table 1. Let us trace down the entries of the first column, which 

is typical. If a profile were to be altered through the addition of one individual 

whose preference order were z, what changes would result? In i, r is preferred to 

s, so Net,(s>r) is decreased by 1, while r is preferred to t and t to s, so both 

Net,(r>t) and Net,(t>s) are increased by 1; this explains row 3. Since s, t, and 

r are ranked 3rd, 2nd, and lst, respectively, by 3, the point contributions to .?, 

tB, and rBB, are -1, 0, and 1, respectively. Since M, is just the sum of G,‘s edge 

labels, a single vote of z contributes to the total spin M, the sum of G’s individual 

edge label contributions: - 1 + 1 + 1 = + 1. 

Table 1 

Strict preference order contributions (version 1) 

(1) 

(2) 

Name of preference order 

Preference order 1:: i] I] [!] [i] i] i] 

(3) Individual edge label 

contributions 

(4) Individual ss contribution -1 +1 0 0 +1 -1 

(5) Individual tB contribution 0 0 +1 -1 -1 +1 

(6) Individual r,% contribution +1 -1 -1 +1 0 0 

(7) Individual M contribution +1 -1 +1 -1 fl -1 

(8) Vote count of a typical profile a b c d e f 
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The last row represents a typical profile %?L in which a denotes the number of in- 

dividuals i for which Pi ranks s, t, and r as G does, b denotes the number for which 

P, ranks s, t, and r as G does, etc. We will write vote count (%)=(a, b,c,d,e,f), 
and refer to any of a, b, c, d, e, or f as particular vote counts. 

Now Table 1 allows us to express the spin and Borda counts for 42 in terms of 

%Y’s vote count. 

Lemma IA. Let 4% be any profile of strict preference orders and s, t and r be three 
alternatives with vote count (021) = (a, b, c, d, e, f ). Then 

M,=(a+c+e)-(b+d+f), 

S ‘z=(b+e)-(a+f), 

t$=(c+f)-(d+e), 

rg=(a+d)-(b+c), 

and 
r 

(b+c+e)- 
(a+d+f) 

Gu= s 

c 

(a+d+e)- 
(b+c+f) 

(a+c+f)- 
(b+d+e) t 

Proof. This is just a matter of summing individual contributions. For example, 

each of the a individuals with preference order i; contributes +l to M, for a total 

contribution of +a, each of the b individuals with preference order G contributes 

-1 for a total contribution of -b, etc., which explains why the above formula for 

M, has a ‘ +’ sign for a, a ‘ - ’ sign for b, etc. 

Lemma 2A (The ‘fundamental decomposition’). Let 49 be any profile of strict 
preference orders and s, t, and r be three alternatives. Then 

GU= 
and G may be 

decom&ed c\s 
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Comments and proof. First observe that when the edge labels of G, are summed 

they should total M, because the three terms of 1/3Msum to M while the three terms 

built from Borda count differences sum to 0. Loosely speaking, this shows that all 

of G,‘s spin is contained in the cyclic component of G,, while there is 0 spin in 

the cocyclic component of G, . The underlying linear algebra reveals that there is 

a unique way to decompose any G, diagram into the sum of one diagram with 

‘pure spin’ and a second diagram with zero spin-this is that decomposition. 

Observe also that we are making a distinction between the spin M,, which is a 

number, and the cyclic component of G,, which is a labelled directed graph 

(strictly speaking this is the distinction between scalar and vector quantities). 

The proof of Lemma 2A from Lemma IA is straightforward, if somewhat tedious 

and uninformative (this is one place where the linear algebraic approach, suppressed 

in this paper, would yield greater insight). We have expressed h4, .s%, tCB, and ? 

in terms of e’s vote count, (a, b, c, d, e,f). When these expressions are substituted 

into the quantity 1/3M+ 2/3(.sB -I-%), and like terms are combined, the result will 

be found to equal (b + c + d) - (a + e+f), which checks with the 7% edge label of 

G *; the other edges similarly check. 0 

We end this section with a comment on the fractions l/3 and 2/3 that appear in 

Lemma 2A. These could have been eliminated had M, been defined, in the first 

place, to be a third of the value we used and had the Borda weights been fixed at 

+2/3, 0, and -213 rather than +l, 0, and -1. Since this would merely shift the ap- 

pearance of fractions within this paper, we will not bother. 

However, in order to check on the presence of a voters’ paradox, we need only 

compare the relative signs of Gw’s edge labels. These relative signs are not affected 

when we multiply all the edge labels through by a fixed constant. 

Accordingly, the conditions in the remaining sections are derived from Fig. 6. 

6. Some theorems on the strong and weak voters’ paradox 

Figure 6 for 3G, leads immediately to 

Theorem 3A(i). Let G2 be a profile of strict preference orders. A necessary and suf- 

3Gu = s M+2(r3- t’) 

M*2(tB-slB) t a r 
M+2(s38-r38) 

Fig. 6 
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ficient condition for 4?~ to omit all length three strong voters’ paradoxes is that for 
every triple s, t,r of three distinct alternatives: 

2min[r~-s~,t~~-rd,s~-tfB]~M~2max[r~W-s~,t~-rrl,sB-ttd]. 

Proof. For 021 to have a strong voters’ paradox either all the edge labels on 3G, 

must be strictly positive (> 0) or all must be strictly negative (< 0). Hence, for 4Y 

to omit both types, at least one edge label must be I 0, and at least one must be 2 0. 

This can be expressed in terms of what we will call a ‘Chinese menu condition’: 

Q.! omits all length three strong voters’ paradoxes if and only if for each triple s, t, r 
of three distinct alternatives, at least one inequality is satisfied from each of the col- 

umns below: 

Column 1 Column 2 

MI 2(r% - s3) ML 2(rS -So) 

MI 2(tSS - rd) Mr 2(tY8 - r%) 

M<2(sSS-tB) M> 2(syB - tYB) 

Now M satisfies at least one of the column 1 inequalities if and only if 

MI 2max [rd - sd, t3 - r$, so - t3], and ‘at least one from column 2’ is equivalent 

to 

2min [r.% - sd, tB - rl, --So - t’$] 5 M. 0 

Let us define a profile %Y to be weakly Borda dominant if for every triple s, t, r 
of three distinct alternatives, 

2min[rB-ssYB,tB--rB,sB- tS]~M<2max[rS-s~,td-rd,s~-tB], 

and to be strictly Borda dominant if for every triple s, t,r of three distinct alter- 

natives, 

2min[r~-sSd,t~-ryd,s~-tf8]<M<2max[r~-s~,t~-r~,~~-t~]. 

Then we may restate: 

Theorem 3A(i). A profile of strict preference orders omits all length three strong 
voters’ paradoxes if and only if the profile is weakly Borda dominant. 

Also, we can add 

Theorem 3A(ii). A profile of strict preference orders omits all length three weak 
voters’ paradoxes if and only if the profile is strictly Borda dominant. 

The proof of Theorem 3A(ii) is almost exactly the same as the proof of Theorem 

3A(i). 

Sen’s sufficient condition (see Theorem 9) for omitting the strong voters’ 
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paradoxes is posed in terms of the vote counts a, 6, c, d, e, and f. Before we begin 

translating spin and Borda count conditions into vote count conditions, it is worth 

asking whether there are ‘improved’ versions of Theorem 3. There is a well-known 

trade-off in which one can buy theorems with simpler and/or more natural-seeming 

conditions, but one has to pay by giving up the simultaneous necessity and sufficien- 

cy of the conditions, so the ‘improvements’ are simpler but weaker. 

One of the most appealing of such improvements is posed in terms of the absolute 

values lrdl, I@, and I tBl of the Borda counts. Given three distinct alternatives S, 

t, and r, let us define B-max to be the greatest of these absolute values, B-mid to 

be the one in the middle, and EBB-min to be the least. 

Corollary 4A. Let %! be a profile of strict preference orders. If, for every three 
distinct alternatives s, t, and r, 

(i) (MI I 2[zB-max + B-min], then 4V omits all length three strong voters’ para- 
doxes, 

(ii) /Ml <2[B-max+ .%?-min], then 49 omits all length three weak voters’ 
paradoxes. 

While if for some three distinct alternatives s, I, and r, 
(iii) IMJ > 2[%- max + B-mid], then % has a length three strong voters’ paradox. 
(iv) IA4 z2[B-max-t- B-mid], then % has a length three weak voters’ paradox. 

A further increase in simplicity can be achieved, at the price of greater logical 

distance’ between the sufficient and necessary conditions. 

Corollary SA. Let 4Y be a profile of strict preference orders. If, for every three 
distinct alternatives s, t, and r, 

(i) IMI 12max[Ir~l, 1~~1, JtBl], then %Y omits a/l length three strong voters’ 
paradoxes. 

(ii) JMj <2max[Ir.Bl, 1~~1, IPI], then 021 omits all length three weak voters’ 
paradoxes. 

While if for some three distinct alternatives s, t, and r, 
(iii) IMI >4max[Ir%l, IPI, [PI], th en d4Y has a length three strong voters’ 

paradox. 
(iv) IMIz4max[/Pj, 1.~~1, IPI], then 4!Y has a length three weak voters’ 

paradox. 

Proofs. Corollary 5A follows immediately from Corollary 4A. For the proof of 

Corollary 4A observe that there are six possible ways in which the Borda counts 

9, 9, and ts might be ordered by 5. Furthermore, since rB + sS + tB = 0 it will 

always be the case that one of the three Borda counts will have both maximal ab- 

solute value and lie on the opposite side of 0 from the other two. Break each of the 

six cases into two subcases according to whether this one Borda count is positive 

or negative. 
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By checking each of the 12 resulting cases it is possible to determine that in each 

case, either 

L 

max [r% - sd, B t - rB, s1 - t%] = 9?-max + ?&‘-mid 

and 1 min[r% - sB, tB - rd, sb - tBB] I= %?-max + a-min 1 

or 

L 

maxI+ - sB, d t - rd, sB - P] = 5?I-max + EZI-min 

1 and Imin[r~-.sSB,td-r~,.s~-ttl]/ =,?Z?-max+9?-mid ’ 
Thus, [MI 5 ZZ?-max + C?J-min guarantees that M lies within the interval of Theorem 

3A(i), while (A41 > B-max + %-mid guarantees that W lies outside this interval, 

establishing parts (i) and (iii). Parts (ii) and (iv) follow similarly from Theorem 

3A(ii). 0 

There is another corollary to Theorem 3 that is interesting in its own right, 

because it provides the link to Sen’s Theorem and because the strengthened hypothe- 

ses turn out (see Section 10) to be necessary and sufficient conditions for some new 

and interesting varieties of ‘quantitative’ transitivity. 

Recall from the proof of Theorem 3 that a necessary and sufficient condition that 

there be no voters’ paradox among the three alternatives s, t, and r, is that 3G, 

have at least one negative edge label, and at least one positive one, and recall Fig. 6. 

3G = 
U 

A stronger condition is that some pair of GW’s edge labels has a negative sum 

and some pair has a positive sum. That this is stronger follows from the fact that 

if a pair of numbers has a sum 5 0, then at least one of the numbers must be I 0 

(similarly for sums L 0, and similarly with these weak inequalities replaced by strict 

ones). 

Accordingly, we wil] define a profile Q to satisfy the weak edge sum condition 
if for every triple of distinct alternatives s, I, and r, two of the quantities 

Net,(s>r), Net,(r>t) and Net,(t>s) have a sum 10, and two have a sum 10; 

this is equivalent to saying that some pair of G,’ s edge labels has a sum 10, and 

some pair has a sum 10, as long as we insist that G%‘s edges be oriented cyclicly. 

Similarly, 4!/ satisfies the strict edge sum condition if for every distinct s, t, and 

r two of Net,(s>r), Net,(r>t), and Net,(t>s) have a sum ~0, and two a sum 

>O; again this corresponds to the signs of G,‘s edge label pair sums, assuming 

cyclical orientation. 

The three possible sums obtained by adding two of the edge labels of 3G, are: 
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[M+ 2(P -P)] + [M+ 2(P - P)] = 2M+ 2(F -P), 

[M+ 2(s% -P)] + [M-t 2(P -P)] = 2M+ 2(P -P), 

and 

[M+ 2(rB - P)] + [M+ 2(P -P)] = 2M+ 2(.P - P). 

Thus, the weak edge sum condition is equivalent to the requirement that for every 

distinct triple s, t, r, at least one of the inequalities be satisfied from each of the col- 

umns below: 

Column 1 Column 2 

Ml(.P-P) Mr (sd - r%) 
Ml(P-P) IL42 (F - P%) 

A45 (P -P) M2 (P -P) 

As in Theorem 3, this Chinese menu condition is equivalent to boxing M inside a 

min-max interval. In this connection, we will define a profile 4?/ to be weakly Borda 
double dominant if for each triple of distinct alternatives s, t, and r we have 

min [P - 9, P -t~,t~-s~]~M~max[sY8-r0,rB-t~,t~-sd]. 

Also, 49 is said to be strictly Borda double dominant if for each triple of distinct 

alternatives s, t, and r we have 

min [.P - 9, r” -P,P-P]<M<max[P-rd,rO-td,tS-P]. 

The reader should note that the interval boxing M in Borda double dominance 

differs from that in Borda dominance in two ways: the factor of 2 has been dropped, 

and the Borda count differences are now taken in reverse order. The net effect is 

that the interval of Borda dominance has been flipped about 0 and shrunk by a fac- 

tor of 2, making the new condition roughly twice as stringent. 

The above discussion constitutes the proof of the following theorem: 

Theorem 6A. Let 42 be any profile of strict preference orders. Then 
(i) weak Borda double dominance is a necessary and sufficient condition for 42 

to satisfy the weak edge sum condition, and is a sufficient condition for QL to omit 
all strong voters’ paradoxes, and 

(ii) strict Borda double dominance is a necessary and sufficient condition for 42 
to satisfy the strict edge sum condition, and is a sufficient condition for @Y to omit 
all weak voters’ paradoxes. 

These edge sum conditions (equivalently, Borda double dominance) probably ap- 

pear to be peripheral issues at this stage. Their connection to the transfer of 

preference principles is established in Section 10 (see the summary chart of parity- 

free properties of a profile %Y), but their genesis actually lays in an analysis of Sen’s 

Theorem that preceded any of the results in this paper. It turns out that there is an 

attractive proof of Sen’s Theorem (not present in its direct form here) that proceeds 
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by arguing that Sen’s assumption of ‘Value-Restricted Preferences’, Sen (1966), 

referred to as ‘Sen Coherence’ in Taylor (unpublished), implies the weak edge sum 

condition, which in turn implies Sen transitivity. 

7. Vote count conditions that forbid the strong and weak voters’ paradoxes 

Theorem 6 compares M with certain Borda count differences. Let us consider any 

one of these: 8a -I-~, for example. Which individual voters actually determine its 

size relative to M? Of the six strict preference orders, four contribute the same 

amount to sd -r% as they do to M, so that if 4!Y contained only preference orders 

from among these four, .ss -rB would equal M. Of the other two preference 

orders, one contributes three more to M than to s% -r%, while the other con- 

tributes three more to .s% -r% than to M. Thus, given a profile G% of strict 

preference orders, the question of whether M is < , = , or >.sB - rd is determined 

solely by which of these two orders achieves a higher vote count. The same is true 

for the other two Borda count differences in Theorem 6, as we can see from Table 2. 

Explanation of Table 2. For example, a single ‘vote’ for iv or for i or for y’ or for 

z’ would contribute the same amount to M as to s% - rB; these amounts are + 1, 

-1, +l, and - 1, respectively. However, a single vote for G would contribute 3 

more to M than to sB - rB, since 1 is 3 more than -2, while a single vote for G 

would similarly contribute 3 more to .sd -rB than to M. 
Thus, if vote count (4%) =(a,6,c,d,e,f), then s% -rBs M if and only if bra, 

and MI sB - rB if and only if a I 6. Similar considerations lead to the following 

lemma: 

Lemma 7A. In the case of a profile %!l of strict preference orders, and three alter- 

Table 2 

Strict preference order contributions (version 2) 

Name of preference order ii 

r 

Preference order 

11 

t 

.s 

Individual M contribution 

Individual p - rd contribution fi 

Individual rs - tH contribution +1 

Individual f.% -sd contribution +1 

Vote count of a typical profile, 4% (I 

p?J +1 

-1 E-i 
-1 +1 

b c 

1 +2 1 +1 -1 

-1 1 1 

d e f 
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natives s, t, and r with vote count (Q) = (a, 6, c, d, e, f ), consider the following two 
menus: 

Menu I Menu 2 

/ 
h 

\ 
A 

/ \ 

Column I Column 2 Column 1 Column 2 

SB- t-@ rM Mrs3-rS bsa a<b 

ry8 - t* I M MI rSS - t.% dsc cld 

t’% - sS I M MI t’% -_s.% f_(e elf 

Each inequality in Menu 1 is equivalent to the Menu 2 inequality in the corre- 
sponding position. Hence the Chinese menu condition for Menu 1 (that at least one 
inequality from each column be satisfied) is equivalent to that for Menu 2. 

Now observe that the Chinese menu condition for Menu 1 is precisely the condi- 

tion in Theorem 6A(i). Hence we can conclude: 

Corollary 8A(i). A necessary and sufficient condition for a profile 4?/ of strict 
preference orders to satisfy the weak edge sum condition (equivalently, weak Borda 
double dominance) and hence a sufficient condition for % to omit all length three 
strong voters’paradoxes, is that for every three distinct alternatives s, t, and r with 
associated vote count (a, 6, c, d, e, f), at least one inequality be satisfied from each 
column below : 

Column I 

bsa 

d<c 

f5e 

Column 2 

ash 

cld 

elf 

A version of Lemma 7A with strict inequalities similarly yields: 

Corollary 8A(ii). A necessary and sufficient condition for a profile %Y of strict 
preference orders to satisfy the strict edge sum condition (equivalently, strict Borda 
double dominance) and hence a sufficient condition for 49 to omit all length three 
weak voters’ paradoxes, is that for every three distinct alternatives s, t, and r with 
associated vote count (a, 6, c, d, e, f ), at least one inequality be satisfied from each 
column below: 

Column I Column 2 

b<a a<b 

d<c c<d 

f<e e<f 

Observe that any ‘null condition’ such as b=O (which asserts of 021 that no in- 

dividual chooses preference order G) implies one of the inequalities in Corollary 
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8A(i) above (but not the strict inequalities in 8A(ii)); 6=0, for example, implies 

b<a since a is necessarily non-negative. This allows us to derive the following 

theorem as a corollary to Corollary 8: 

Theorem 9A (A version of Sen’s Theorem, weaker than Corollary 8). Let 4Y be a 
profile of strict preference orders. A sufficient condition that 4Y omit all length 
three strong voters’ paradoxes is that for every three distinct alternatives s, t, and 
r with associated vote count (a, b, c, d, e,f) at least one null condition holds from 
each column below: 

Column 1 

b=O 

d=O 

f=O 

Column 2 

a=0 

c=o 

e=O 

It remains to convince the reader familiar with Sen’s Theorem that the above is 

the parity-free, strict preference order version of this well-known result. This ver- 

sion states that a ‘Sen coherent’ (see below) profile of strict preference orders has 

no strong voters’ paradoxes. 

A profile is said to be Sen coherent (or value-restricted) if for each choice of three 

distinct alternatives s, t, and r, there exists at least one of the three, and one position 

(first, second, or third place) such that no individual ranks that alternative in that 

position. Sen coherence generalizes single peakedness, Black (1958), and is discussed 

in Brams (1985). Since there are three alternatives and three positions, 021 is Sen 

coherent if one of nine possible situations prevails for each choice of s, t, and r. One 

of these situations, for example, is that no individual rank t second. Since the only 

preference orders that rank t second are i and G, this amounts to saying that a=0 
and b = 0. Observe that this is one of the nine ways that the Chinese menu condition 

of Theorem 9A can be satisfied. The other eight Sen coherent situations can easily 

be seen to correspond to the other eight ways in which we can combine one null con- 

dition from column 1 (of Theorem 9) with one from column 2. Thus, the condition 

of Theorem 9 is equivalent to Sen coherence. 

There exists a third version of Theorem 6, which is worth stating because of its 

‘ntuitive content. Notice that a, c, and e are the vote counts of the three preference 

orders (u, &, and y’, respectively) with positive spins, while b, d, and f are the vote 

counts of their respective reverse orders (3, i, and z, respectively) each of which 

has negative spin. 

We will define %?L’s spin to be uniformly imbalanced for the distinct alternatives 

s, t, and r if there is a spin sign (either + or - ) such that each vote count associated 

with a preference order having spin with this sign, strictly exceeds the vote count 

associated with its reverse order. In terms of inequalities this can be restated as 

[a>b and c>d and e>f] or [b>a and d>c and f>e]. 
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It is reasonable to use the term ‘uniform imbalance’ for this condition, since for 

M to be ‘imbalanced’ (non-zero) is equivalent to the weaker condition: 

[(a+c+e)>(b+d+f)] or [(b+d+d)>(a+c+e)]. 

This allows us to state 

Corollary 10 (third version of Theorem 6). A necessary and sufficient condition for 
a profile %! of strict preference orders to satisfy the weak edge sum condition, and 
hence a sufficient condition for %?.! to omit all strong voters’ paradoxes, is that for 
each choice of three distinct alternatives, s, t, and r, Ws spin is not uniformly im- 
balanced. 

(Clearly we could phrase a version of Corollary 10 for the strict edge sum condi- 

tion and weak voters’ paradoxes, as well.) 

Proof. If ozd does not have uniformly imbalanced spin, then one of the three ine- 

qualities a> b, c>d, e>f must fail and one of b> a, d> c, f>e must fail; this is 

equivalent to the Chinese menu condition holding in Corollary 8. 

It should be stressed that Theorem 6, and Corollaries 8 and 10 are essentially 

statements of the same result, phrased differently. 

Comment. In the case of precisely three alternatives, there is an interesting heuristic 

argument suggesting that the likelihood that any of the conditions equivalent to the 

weak edge sum condition hold for a ‘randomly’ chosen profile uz1 is > 314, so there 

is a less than 25% chance of uniformly imbalanced spin (and therefore, a less than 

25% chance of & having a strong voters’ paradox). 

The argument is as follows: if a, b, c, d, e and f are chosen at random (in the sense 

that every vote count (a, b, c, d, e,f) summing to the number of voters is equally like- 

ly), then 

a > b or b > a are equally likely, 

and 

c>d or d>c are equally likely, 

e>f or f>e are equally likely. 

This means that the eight possible ways of choosing a combination of one of each 

of two possibilities (such as b>a and d> c and e>f) are all equally likely. Since 

only two of these combinations yield uniformly imbalanced spin, the odds of having 

uniformly imbalanced spin are 2 in 8, or 25%. These calculations omit the possibili- 

ty that a = b or c = d or e = f. If any of these hold, then spin is not uniformly im- 

balanced, so that the actual odds are less than 25%. Of course, if a, b, c, d, e, and 

f are chosen randomly from among a large number of possibilities (say each is 

chosen between 0 and 999), then such an equality is highly unlikely so that 25% 

becomes very close to the right odds for uniform imbalance of spin. Since the weak 
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edge sum condition, and its equivalent, are not precisely the same as other transitivi- 

ty conditions studied in the literature, this calculation will not yield the probabilities 

found in the literature for those other conditions. 

8. Two examples 

In this section we choose a profile 021 that ‘barely’ meets the equivalent conditions 

of Theorem 6 and Corollaries 8 and 10 (but not that of Sen’s Theorem) and which 

therefore has no length three voters’ paradoxes, and we work through some of the 

relevant quantities. 

A modification of this example provides a proof that there exist profiles meeting 

the necessary and sufficient conditions of Theorem 3A (and which therefore have 

no strong voters’ paradoxes) but failing to meet the condition of Theorem 6. This 

example serves to establish that the weak edge sum condition is not necessary for 

the omission of length three strong voters’ paradoxes. 

Example 1 (three alternatives in total; s, t, and r) 

Preference orders: z c 2 2 y’ z’ 

Vote count (a): 10 2 12 3 7 8 

(a) (b) (c) (d) (e) (f) 
Observe that 10~2, 12> 3, but 7 is not >8, so a’s spin is not uniformly im- 

balanced, hence we know that 021 omits the length three strong voters’ paradoxes, 

by Corollary 10. 

Applying Lemma 1A tells us that 

M=(a+c+e)-(b+d+f)=29-13=16, 

p=(b+e)-(a+f)=9- 18=-9, 

t~B=(C+f)-((d+e)=20-10=10, 

and 

r%=(u+d)-(b+c)=13-14=-l, 

u II II 

Gu = Spin Content + Borda Content 

Fig. 7. 
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from which Lemma 2A provides the decomposition (Fig. 7) in which the Borda con- 

tent may be said to ‘mask’ the spin content. 

For Theorem 3A, 

2(rB -9%) = 16, 

2(P -P) = 22, 

2(s% - rYB) = -38. 

The maximum of these is 22 and minimum is -38, so the Theorem 3 interval is 

-3BsA4<22. 

In connection with Corollary 4 and its proof, note that in this example B- 

max = 10, B-mid = 9, and B-min = 1, so 2(B-max + B-mid) = 38 while 2(B-max + B- 
min) = 22. The interval IMl< 22 lies within the Theorem 3 interval and is the suffi- 

cient condition in Corollary 4. Also, IMI >38 would guarantee that A4 lay outside 

the Theorem 3 interval and would therefore lead to a strong voters’ paradox. The 

two conditions of Corollary 5 become, respectively, IMI I 20 and JMI >40. Of 

course, in this example the actual value of M is 16, so A4 meets the sufficient condi- 

tions for the omission of the strong voters’ paradox in Corollary 5 (and hence in 

Theorem 3 and Corollary 4, since Corollary 5 has the most stringent such con- 

dition). 

We already know that in this example A4 will lie within the Theorem 6 interval, 

since lying within this interval is equivalent to not having uniformly imbalanced 

spin. The calculations are: 

Since the minimum of these is -11 and maximum is 19 the interval becomes 

- 11 IMI 19. (The doubling of this interval is -22 1A4r 38 and has pieces that are 

outside of the Theorem 3 interval.) This illustrates that the factor of 2 in Theorem 

3’s interval bounds must be dropped when the Borda count differences are reversed 

in Corollary 6. Observe also that if this doubled Corollary 6 interval, -22 IMI 38, 

is ‘reversed’ to -38 IMI 22, the Theorem 3 interval is obtained. A quick check of 

the algebra reveals this to be true in general. 

Comment. The 0 on the 3 edge of G, has no particular significance to this exam- 

ple. If we jiggle Q/ by changing c from 12 to 13, all the qualitative features of the 

example are preserved, but the number of individuals becomes odd, which rules out 

any O’s on GUU’s edges. 

Example 2. Again let s, t, and r be the only three alternatives, and consider the pro- 

file V with vote count (“Y) = (10,2, 13,3,7,6) = (a, b, c, d, e,f). 



208 W.S. Zwicker / The vofers’ paradox 

Observe that 10>2, 13 >3, and 7>6, so that the spin is uniformly imbalanced. 

This means that neither Theorem 6A nor Theorem 9A (our first version of Sen’s 

Theorem) rules out the strong voters’ paradox, for this example. 

However, the (doubled) Borda count differences of Theorem 3A(ii) are 

2(r% -P) = + 10, 

2(P - r,%) = 22, 

and 

2(~$ - t.%) = -32, 

producing a min-max interval of 

-32<M<22, 

and the spin, M, is 19, which lies strictly within the interval. So Theorem 3A(ii) tells 

us that there are no weak voters’ paradoxes. 

G, turns out to be as shown in Fig. 8. 

r 
+3 

S a -1 

+17 
t 

Fig. 8. 

9. Weak preference orders 

What happens when we allow individual preference orders in our profiles to have 

‘ties’? 

Example. Rj= [if] (individual j is ‘indifferent to s versus t’). 

As we will see, this change has essentially no effect on the statements of the main 

results of Section 6, while the Section 7 results must be changed only slightly to ac- 

count for the additional preference orders; the intuitions and ideas are unchanged 

but the proofs of these results have to be slightly expanded. 

It turns out that the only real subtlety lies in the parity-dependent results of Sec- 

tion 11, where the strict preference order versions are more straightforward. 

In this section we discuss the changes that need to be made in the earlier material 

in order to account for the presence of preference orders such as Rj above. 

Notation. We will refer to a profile 4% that is permitted to contain both strict 

preference orders and preference orders with ties, simply as a profile: 

%=(R;:iEN). 
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The symbol P is reserved for strict preference, while R is used for ‘strictly prefers 

or is indifferent to’, also called ‘weak preference’. Thus, in our example Rj, above 

rPjS 
and 

SRj t 

rPj t tRjS 
(together, the second two assert indifference). 

(It would also be correct to state that rR,s, for example.) When we assert that a 

typical Ri is a preference order we intend that R, denote weak preference but that 

the order might, or might not, actually contain any ties. 

Changes in definitions. The definitions of Net,(x>y) and of G, do not change. 

There are additional possible contributions of an individual preference order to 

G,‘s spin content and to its Borda content, however, and we have to redefine: 

I 

the number of individuals 

x$ = (+ 1) ranking x alone in first 

place I I 

the number ranking x 

+(+1/2) as tied with one other 

in first place I 

: 

the number ranking x 

+(-l/2) as tied with one other 

in last place 1 I 

the number ranking x 

+ (-1) alone in last place 

1 

. 

Notice that this means that besides using the Borda count weight distribution of 1, 

0, -1 for strict preference orders, we use distributions of l/2, l/2, -1 and of 1, 

-l/2, -l/2 when there is a single two-way tie for first or last place, respectively 

(and of 0, 0, 0 for the completely indifferent voter). Each of these weight distribu- 

tions also sums to zero, so that the formula 

remains valid. The actual weights are generated by the underlying linear algebra (see 

MC 4), but correspond with the common-sense proposition (sometimes followed in 

practice) that in a Borda count system any individual who has several alternatives 

in a tie awards to each the average of the weights for the tied positions. 

M,‘s definition remains the same, as does the fact that (given our counter- 

clockwise orientation of G), M, is exactly G,‘s edge-label sum. 

For the analogues to Lemmas 1A and 2A, we need to expand our table of in- 

dividual contributions (Table 3). 

Since voters’ paradoxes fail to arise in voting systems (such as approval voting) 

when there are only two intensity-of-approval levels, it is perhaps unsurprising that 

each of the above preference orders contribute no spin. Indeed, the fact that there 

is zero spin in any preference order having but two such levels may be viewed as 

the explanation for why approval voting yields no voters paradoxes. (Of course, 

there are explanations that do not refer to spin, as well.) 

When we write vote count (a) = (a, b,c, d,e,Ag, h,i,j, k, I) we indicate that 



210 

Table 3 

W.S. Zwicker / The voters’ paradox 

Weak preference order contributions 

Name of preference order 

1st 
Preference order 

2nd 

i 

st II r 

Individual edge label 

contributions 

Individual s.* contribution 

Individual t,% contribution 

Individual r* contribution 

Individual A4 contribution 

Individual @-r.* contribution 

Individual r,* - tJ contribution 

Individual t.* -sB contribution 

Vote count of a typical profile 

t 

+ 

-1 

b 

( 

0 

s 
r il st 

rs [I t 

0 ” 
q 4 1 s I 

Ot -’ t 

+ 

-1 

+ 

0 

0 

6, 

g h i j k 

3, 

t I:j rs 

0 ’ 

S 

4 
-1 

’ t 
1 * 

1 

I 
2 

0 

0 

-I+ 

pTj 

I 

a, 6, . . . , 
+_ 

l_ are the number of individuals who order S, t, and r according to 

U, 0, . ..) t9, respectively. It is now straightforward to derive: 

Lemma 1B. Let % be any profile of preference orders, s, t, and r be any three alter- 
natives, and vote count (%) = (a, 6, c, d, e,J g, h, i, j, k, I). Then 

M,=(a+c+e)-(b+d+f), 

sc=(b+e+h+ 1/2i+ 1/2k)-(a+f+g+ 1/2j+ l/21), 

t$=(c+f+I+ 1/2g+ 1/2i)-(d+e+k+ 1/2h+ 1/2j), 

rz=(a+d+j+1/2g+1/2k)-(b+c+i+1/2h+1/2/). 

The new version of Lemma 2A for profiles (which may include weak preference 

orders) reads exactly as the original-perhaps this suggests that the decomposition 

of G, (into a spin and a Borda part) uncovers a truth intrinsic to the situation: 

Lemma 2B. Let %Y be any profile and s, t, and r be three alternatives. Then 
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GU= 

1/3M+ = 

Z/3(2-r') 

GU= 5 

c 

1/3M+ 

1/3M+ 
2/3(rB-tr0, 

2/3(t~-29 t 

and GU may be 

decomposed as 

The proof and comments for Lemma 2B are exactly as for Lemma 2A. Of course, 

the actual checking of algebra takes longer since there are additional contributions 

to the vote count from the new preference orders. 

All the results of Section 6 go through for profiles exactly as they did for the more 

restrictive ‘profiles of strict preference orders’, because they all flow from Lemma 

2B. 

Theorems 3B and 6B, and Corollaries 4B and 5B. Exactfy as in the ‘A’ versions, 
with ‘profile’ replacing ‘profile of strict preference orders’. 

The vote count conditions that forbid voters’ paradoxes must be modified when 

we lengthen vote counts to include the new preference orders. 

Recall that of the six strict preference orders for three alternatives only one, z, 

contributes more to M than to s3 - r%, and only G contributes more to sd - rd 
than to M. This is why the relative sizes of a and b (the vote counts for z and c) 

were alone enough to determine the relative sizes of ss - rB and M. 

Among the weak pr%ference orders, however, C? and s’ contribute more to A4 

than to ? - rs, while p and 7 contribute more to .sB - rB than to M. These dif- 

ferences in individual contributions are half the size of the differences contributed 

by u’ and G. Thus, before we had 

.#s - rd sM, if and only if bl a (strict preference orders only), 

while now we get 

P-P5A4, if and only if b+1/2h+1/2iIa+1/2g+1/2j 

(weak preference orders included). 

Similarly, we obtain: 



212 W.S. Zwicker / The voters’ paradox 

Lemma 7B. In the case of a profile and three alternatives s, t, and r with vote count 
(%) = (a, b, c, d, e,f, g, h, i, j, k, 1) consider the following two menus: 

Menu I 
A / \ 

Column I Column 2 
sS-rYB<M MlsYB-rB 

rS-tS5M Msr%-t% 

tB-sSd<M MI tSYB -sd 

Menu 2 

Column I 
\ 

Column 2 

b+1/2(h+i)<a+1/2(g+j) a+1/2(g+j)rb+1/2(h+i) 

d+1/2(j+k)c:c+1/2(i+l) c+l/2(i+l)rd+1/2(j+k) 

f+1/2(g+l)Ie+1/2(h+k) e+1/2(h+k)<f+1/2(g+l) 

Each inequality in Menu 1 is equivalent to the Menu 2 inequality in the corre- 
sponding position. Hence the Chinese menu condition for Menu 1 (that at least one 
inequality from each column be satisfied) is equivalent to that for Menu 2. 

As earlier, the Chinese menu condition for Menu 1 is exactly the condition of Cor- 

ollary 6B(i), so we can conclude: 

Corollary 8B(i) (Vote count version of Theorem 6B(i)). A necessary and sufficient 
condition for a profile 4?~ to satisfy the weak edge sum condition (equivalently, weak 
Borda double dominance), and hence a sufficient condition for %! to omit all length 
three strong voters’ paradoxes, is that for every three distinct alternatives s, t, and 
r with associated vote count (a, 6, c,d, e,f,g, h, i, j, k, 1) at least one inequality be 
satisfied from each column below: 

Column I 

b+1/2(h+i)sa+1/2(g+j) 

d+1/2(j+k)sc+1/2(i+l) 

f+1/2(g+l)se+1/2(h+k) 

Column 2 

a+1/2(g+j)<b+1/2(h+i) 

c+1/2(i+l)~d+1/2(j+k) 

e+1/2(h+k)cf+1/2(g+I) 

A version of Lemma 7B with strict inequalities similarly yields: 

Corollary 8B(ii) (Vote count version of Theorem 6B(ii). A necessary and sufficient 
condition for a profile % to satisfy the weak edge sum condition (equivalently, strict 
Borda double dominance), and hence a sufficient condition for %?L to omit all length 
three strong voters’ paradoxes, is that for every three distinct alternatives s, t, and 
r with associated vote count (a, b, c, d, e,f, g, h, i, j, k, 1) at least one inequality be 
satisfied from each column below: 
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Coh.4mn 1 

b+1/2(h+i)<a+1/2(g+j) 

d+1/2(j+k)<c+1/2(i+I) 

f+1/2(g+I)<e+1/2(h+k) 

Column 2 

a+l/2(g+j)<b+1/2(h+i) 

c+1/2(i+!)<d+1/2(j+k) 

e+1/2(h+k)<f+1/2(g+f) 

Again, certain null conditions (such as b = h = i = 0) imply that certain inequalities 

are satisfied, allowing us to derive the following theorem as a corollary to Corollary 

8B(i): 

Theorem 9B (A version of Sen’s Theorem, weaker than Corollary 8). Let 44! be any 
profile. A sufficient condition that 0% omit ail length three strong voters’ paradoxes 
is that for every three distinct alternatives s, t, and r with associated vote count 
(a, 6, c, d, e,f, g, h, i, j, k, I) at least one null condition holds from each column below: 

Column I 

b=h=i=O 

d=j=k=O 

f=g=[=O 

Column 2 

a=g=j=O 

c=i=/=O 

e=h=k=O 

Discussion. Again, the nine possible combinations (of one null condition from col- 

umn 1 and one from column 2) correspond to the nine situations that result in Sen 

coherence. For example, if no one ranks t ‘among the middle’ (meaning tied for first 

place, alone in the middle, or tied for last place), then no individual specifies 

preference orders 2, c, G, j, F, or 2, so a = b =g= h = i =j=O, and the first null 

condition in each column is met. In checking out the other eight situations, recall 

that besides ‘among the middle’, there is ‘among the best’ (meaning alone in first 

place or tied for first) and ‘among the worst’ (meaning alone in last place or tied 

for last). 

Comment on the missing Corollary 10B. It certainly would be possible to define a 

version of ‘uniformly imbalanced spin’ in the context of weak preference orders, but 

until such time as a satisfactory interpretation of the quantity of (for example) 

b + 1/2(h + i) can be developed, we shall not do so. In passing we observe that the 

preference orders G, p, and y’ counted by 6, h, and i, respectively, are: 

It is difficult to see how they measure any ‘spin’ in common, since j and f have 

0 spin. What they have in common is that they represent the three ways an individual 

preference order can arise from the weak order s> t zr by making at least one of 
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the two preferences strict. Also, a, g, andj (the quantities on the other side of the 

inequality on line 1 of the Corollary SB menu) are counts of the three ways an in- 

dividual preference order can similarly arise from the reverse order r2 t 2 s. At this 

point these observations seem to be more labored than they are revealing, however. 

10. Transitivity, voters’ paradoxes, and Condorcet conditions 

Up to this point we have phrased our conclusions in terms of forbidden 

configurations- ‘. . . then 021 has no length three strong (or weak) voters’ para- 

doxes’, meaning that for each choice of three distinct alternatives s, t, and r (from 

among all the alternatives) it is not the case that a strong (or weak) voters’ paradox 

exists among the three. Equivalently, we may phrase this as ‘no cycle of strict (or 

weak) majorities exists among any three of the alternatives’. 

It is more traditional to phrase conclusions in terms of so-called transitivity condi- 

tions. For 42 any profile and x and y any alternatives let us define 

and 

xR,y to mean Net,(x>y)rO, 

xP, y to mean Net,(x>y)>O. 

Thus, xR, y says that among those concerned with x and y (i.e. those not indif- 

ferent to x and y) a weak majority (half or more) prefer x to y, while xP, y says 

that a strong majority (more than half) of those concerned prefer x to y. 

An example of a transitivity condition is 

xR, yR,z+xR,z (*) 

and this is taken to mean that for every three distinct alternatives x, y, and z, if 

xR, y and yR,z, then xR,z. Any such transitivity condition can be translated in- 

to a statement that certain situations are forbidden; in this case it is forbidden that 

xR, y, yR,z, and zP,x. If the edges between x, y, and z are oriented, as in Fig. 9, 

then this says that the combination of non-negative edge labels for the xy and yz 

edges with a strictly positive edge label for xz is a forbidden one. 

Because each of the transitivity conditions is a statement about every choice of 

alternatives x, y, and z, the configuration shown in Fig. 10 is also ruled out. 

It is easy to see that a profile 42 satisfies the transitivity condition (*) above if 

and only if for each triple x, y, z qf distinct alternatives and each orientation of the 

Y 

20 20 A (““1 

X z 

10 
Fig. 9. 
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( ***) 
This configuration would 
have zR yR 
zR,,,x. ’ ’ 

x, but not 

Fig. 10. 

corresponding triangle G in such a way that the edges flow in a cycle, neither of the 
configurations (**) or (***) for G, occurs. 

In what follows, when we characterize various transitivity conditions in terms of 

forbidden configurations, the italicized words above should be understood to apply, 

and we shall speak simply in terms of a given transitivity condition as equivalent 

to certain configurations being forbidden. 

As we see in Table 4, there are four qualitative transitivity conditions that seem 

to arise naturally and that are equivalent to certain forbidden configurations. The 

four are listed in order of increasing strength-that they get stronger should be clear 

Table 4 

Levels of qualitative transitivity and voters’ paradoxes 

Transitivity condition Equivalent edge-label 

restrictions (assuming 

G is oriented in a cycle, 

either direction) 

Equivalent forbidden 

configurations 

(1) Weak fransitivity 

xP+/ yP.,z+xR,t 

If any two edges are >O, 

the third must be SO 

(and if any two are <0, 

the third must be 20) 

(no length three strong 

voters’ paradoxes) 

‘?zO %X0 
>o <o 

(2) Sen transitivity 

xP*yR,z-xR,z 

and 

xR~~yP,z-*xR,Za 

If any edge is >0 and 

any other is 20, the 

third must be ~0 (and if 

‘WO <WO 
>o <o 

any is ~0 and any other ~0, 

the third must be 20) 

(3) Tradifional transitivity 

xR,yR,z+xR,rb 

If any two edges are 20, 

the third must be ~0 

(and if two are SO, 

the third must be 20) 

a&o <a0 

>o <o 

(4) Strong transitivity If any two edges are 20, 

xR* yR,z +xP,z the third must be <0 

(and if any two are SO, 

the third must be >O) 

a Equivalently, xP, yP,z + xP,z. 

X&o SO& 

(no kfgth three’ieak 

voters’ paradoxes) 

b Equivalently, xR, yP,z -t xP,z and xP* yR,z + xP,z. 
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from the forbidden configurations, since the stronger ones forbid more con- 
figurations. 

As the table indicates, ‘no length three strong voters’ paradoxes’. is equivalent to 
the weakest of these conditions, while ‘no length three weak voters’ paradoxes’ is 
equivalent to the strongest. Each of the two intermediate forms has a second, 
equivalent transitivity expression; one way to see that the equivalence holds is to 
observe that the ‘forbidden configurations’ version is equivalent to each of the ex- 
pressions. 

For the record we note: 

Observation 11. Let $2 be any profile (for any number of alternatives). Then the 
four qualitative transitivity conditions are graded in strength as 

Strong * Traditional j Sen j Weak. 

There are other transitivity properties that are quantitative in nature in that they 
refer to the amounts by which a majority prefers one alternative to another. 

One such property is of special interest because it is equivalent to the weak edge 
sum condition of Section 6. Because this condition is itself equivalent to weak Borda 
double dominance, this form of Borda dominance is revealed to be necessary and 
sufficient for a type of transitivity. 

For context, recall that a profile %! satisfies the weak edge sum condition if for 
every three distinct alternatives x, y, and z and every cycling orientation of the cor- 
responding triangle G, G, has two edge labels with a sum 20, and two with a sum 
10. 

Also recall that 42 is weakly Borda double dominant if for every three distinct 
alternatives s, t, and r, 

min [P - P, rB -t~,tB-sB]~M~max[s~-rrYB,r~-t~,tB-s~]. 

Now we define: 42 transfers strict preference if for every three distinct alternatives 
x, y, and z and every strictly positive integer k>O, if Net,(x>y)? k and 
Net,(y>z)>k, then Net,(x>z)>k. 

Theorem 12. For any profile %, 42 satisfies the weak edge sum condition if and 
only if 4?L transfers sti?ct preference. 

X z 

Fig. 11. 
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Y j k 

X A z 
1 

Fig. 12. 

Proof. (3 ) Assume the weak edge sum condition. Let k>O with Net,(x>y)? k 
and Net,(y >z) 2 k. Orient G as in Fig. 11 and observe that two edges must receive 
edge labels 2 k. The sum of these two edges labels is 2 2k > 0, so the third edge must 
be ‘negative enough’ to sum to a number I 0 when a number 2 k is added to it. 
This means Net,(z>x)I-k, which is the same as saying Net,(x>z)rk. 

( t ) Assume 4?/ satisfies transfer of strict preference, and let x, y, z be any three 
alternatives. Without loss of generality, assume that their triangle G is oriented as 
shown in Fig. 12. 

Case I: Assume some two edges both have labels >O. Without loss of generality 
assume the yx edge label =j, the zy edge label = k, and 0< ksj. Then k> 0 and 
Net,(x>y)>k and Net,(y>z)?k, so by transfer of strict preference 
Net,(x>z)r k. Since I = Net,(z>x) = -Net,(x>z), it follows that Ir -k, so that 
I+ k<O. Thus, some pair of edge labels has a sum 20, and some pair a sum 10. 

Case 2: Assume some two edges both have labels 5 0. Very similar to Case 1. 
Case 3: Assume one edge has a 0 label, one edge a label > 0, and one edge a label 

~0. It is clear in this case that the weak edge sum condition is satisfied. 
Case 4: Assume two or more edges have 0 labels. Again it is clear that the weak 

edge sum condition is satisfied. 0 

What is the ‘best’ version of Sen’s Theorem? This all depends on which transitivi- 
ty condition is viewed as the goal, so there will always be a number of versions 
around. However, appropriateness arguments can be made for favoring one or 
more forms of transitivity over others. One such argument states that the ap- 
propriate transitivity conditions are those that guarantee a ‘Condorcet winner’ (see 
the discussion below). Sen transitivity can be seen to be appropriate in this sense, 
and it is a straightforward 

Observation 12. If 4Y transfers strict preference, then % is Sen transitive. 

Thus, another reason for interest in Theorems 6 and 12 is that they provide a link 
with conditions based on the notions of a Condorcet winner. As we will see, weak 
transitivity is not sufficiently powerful to provide this link. 

Definition. Given a profile %!, a Condorcet winner is an alternative s that at least 
ties every other alternative in one-on-one matchups with majority rule; equivalently, 
sR,x for every alternative x. 
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Fig. 13. 

Theorem 13. If %2 is Sen transitive, then there exists a Condorcet winner. 

Proof. Construct any P, chain of maximal length 

Sen transitivity guarantees that such a maximal chain exists, since it guarantees that 

no alternative can appear twice in such a P, chain. It follows that the top element 

in such a chain (xr above) is a Condorcet winner. 0 

To see that weak transitivity does not suffice, an example will do the trick 

(Fig. 13). Here are four alternatives. It is true that W satisfies weak transitivity 

(there are no length three strong voters’ paradoxes), but there is a cycle of majorities 

among the four (a ‘length four voters’ paradox’), and thus there is no Condorcet 

winner. 

No transitivity condition could be equivalent to the existence of a Condorcet win- 

ner, since the presence of one overwhelmingly favored alternative cannot possibly 

preclude length three voters’ paradoxes among the other alternatives (see Fig. 14). 

However, the following condition is more comparable to transitivity conditions: 

Definition. A profile Q is hereditarily Condorcet if for each non-empty subset Y 

of the set X of alternatives there is some alternative s in Y such that sR, y for each 

y in Y (s is a ‘local Condorcet winner’). 

P 
15 

9 

15 

M 

5 
15 5 

S 

In this example p is a 
Condorcet winner, yet a 
strong voters’ paradox 
exists. 

5 r 

Fig. 14. 
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Theorem 14. Let S!/ be any profile. Then 
(a) 021 is hereditarily Condorcet if and only if no strong voters’ paradoxes exist 

(i.e. no cycle of strict majorities of any length exists), and 
(b) %! is Sen transitive j 4Y is hereditarily Condorcet - 4?l is weakly transitive. 

Proof. (a) If u%l has a voters’ paradox of any length, then there can be no local 

Condorcet winner among the alternatives in this voters’ paradox. Hence, if 4?/ is 

hereditarily Condorcet it has no such paradox. 

To say that @ has no strong voters’ paradoxes of any length is precisely to say 

that no alternative can appear twice in any P, chain. Given this condition and any 

Supertransfers* , l , Strictly Borda 

J 

Weak Preference Double Dominant 
(Strict edge sum 
condition) 

Strongly Transitive 
(No length 3 weak - 

Strictly Borde 
Dominant 

voters’ paradoxes) 

1 
Transfers Weak* 

l 

J 

Preference 

Traditionally Transitive 
(~R~yI.2~2 +xR& 

Transitivity’ 
of 

Transfers Strict 
, Preference - 

Indifference 

i / 
Sen Transitive 

Sen 

Coherent 

J 
Weakly Borda 
Double Dominant 
(Weak edge sum 

condition) 

(x PuyPqlz -rXPUz!uz) 

Hereditarily Condorcet 
(Every non-empty set of 

No Strong 

c--3 Voters’ Paradoxes 
alternatives has a 

Condorcet winner) 
of Any Length 

J 
There 1s a 

Condorcet 
Winner 

Weakly Transltlve 

(No length 3 strong 4 
voters’ paradoxes) 

Weakly Borda 

’ Dominant 

Fig. 15. Summary: parity-free properties of a profile @(properties and arrows marked with asterisks will 
be discussed subsequently). 
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subset Y of alternatives, there must be a P, chain of maximal length among those 

chains containing only alternatives in Y. The top alternative in this chain is a local 

Condorcet winner for the set Y. 

(b) If Q is Sen transitive, the argument that it is hereditarily Condorcet is exactly 

as in the proof of Theorem 13. Since a hereditarily Condorcet profile %2 has no 

strong voters’ paradoxes of any length it certainly has no strong voters’ paradoxes 

of length three, so such a uz1 is weakly transitive. 0 

We summarize most of the results for profiles Q (of mixed weak and strict 

preference orders) in Fig. 15. This figure includes all the parity-free properties 

discussed up to this point, and their logical relationships, except for Corollaries 4 

and 5. 

It is interesting to note that strict double Borda dominance is also necessary and 

sufficient for a quantitative form of transitivity. 

Definition. 021 supertransfers weak preference if for every three alternatives x, y, 

and z and every weakly positive integer kz0, if Net,(x>y)Zk and 

Net oll( y > z) 1 k, then Net @(x> z) > k. (Note that the last inequality is strict, imply- 

ing that net preferences grow strictly larger as they transfer.) 

Theorem 13. For any profile “%I, Q.l satisfies the strict edge sum condition if and 
only if %! supertransfers weak preference. 

Proof. (-) Assume that @2 satisfies the strict edge sum condition, i.e. for every 

three alternatives x, y, and z and every cycling orientation of the corresponding 

triangle G, G, has two edge labels with a sum >O, and two with a sum <O. Let 

kr 0 with Net *(x1 y) 1 k and Net a( y> z) 2 k. Orient G as in Fig. 16 and observe 

that two edges receive labels L k. Since the sum of these labels is ~2k 10, the third 

must receive a label negative enough to sum to a number < 0 when a number 1 k 
is added to it. This means that Net,&(z>x)<-k, which means that 

Net,(x>z)> k, as desired. 

(t ) Assume that % satisfies supertransfer of weak preference, and let x, y, and 

z be any three alternatives. Without loss of generality, assume that their triangle G 

is oriented as in Fig. 17. 

Case I: Some two edges both have labels L 0. Without loss of generality assume 

Oiksj. Then kz0 and Net,(x>y)>k and Net,(y>z)rk, so by our assump- 

X Z 

Fig. 16. 
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Y j k 

X J\ z 

1 

Fig. 17 

tion Net,(x>z)>k, so f=Net,(z>x)<-k50. Then j+k?O, while k+l<O. It 

remains only to show that j + k#O. 
But if j+k=O, then j=k=O. In this situation, we would have Net,(z>Y)rO 

and Net,ti(Y>x)?O, and conclude Net,(z>x)>O, i.e. I>O. This is a contradic- 

tion since we have already shown that f<O, so under the assumption of super- 

transfer of weak preference, j+ k=O is impossible. 

Case 2: Some two edges both have labels SO-similar. 0 

Now let us define: QL transfers weak preference if for every three alternatives x, 

Y, and z and every weakly positive integer k, if Net,(x>y)? k and 

Net,(y>z)rk, then Net,(x>z)>k. Then it is an easy 

Observation 14. If %Y transfers weak preference, then +!/ is traditionally transitive. 
We end this section with a brief discussion of the transitivity of indifference. 

Given alternatives x and y we will say that a profile C?L is indifferent to x and y (nota- 

tion: XI, y) if both xR, y and yR,x. Equivalently, XI,& y if and only if 

Net,e(x>y)=O=Net,ti(y>x). 

4?~ satisfies transitivity of indifference if for each three alternatives x, y, and z, 

if XI, y and yZqlz, then xZ,z. It is easy to see that if % is traditionally transitive, 

then uz1 satisfies transitivity of indifference, since if XI, yZ,z, then both 

xR,, yR,z and also zR/* yR,x from which traditional transitivity implies both 

xR,z and zR,x. Hence: 

Observation 15. Zf 42 is traditionally transitive, then uz1 satisfies transitivity of in- 
difference. 

This completes our discussion of Fig. 15. 

11. Parity considerations 

When assumptions are made about the number of concerned individuals (that it 

is an odd number, for example) hypotheses such as Sen coherence or weak Borda 

dominance yield stronger conclusions than they otherwise would. We will consider 

two parity conditions: 
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Parity condition 1. For every pair, x and y, of distinct alternatives the number of 

concerned individuals (individuals not indifferent to x and y) is odd. 

Parity condition 2. For every triple x, y, and z of distinct alternatives the number 

of concerned individuals (individuals who do not rank all three at the same level) 

is odd. 

Observe that to be concerned among three alternatives means to be concerned 

with at least one pair from the three. 

Neither of the two conditions implies the other (see Corollary 18) so strictly speak- 

ing neither is stronger. In terms of consequences, however, the first has a more far- 

reaching effect. 

Sen’s Theorem (Original version). In the presence of Parity condition 2, if %! is a 
Sen coherent profile, then G? is traditionally transitive. 

The proof is omitted. See Sen (1966) and Taylor (unpublished). 

Part of the importance of this theorem lies in the particular way in which the two 

assumptions reinforce each other. Other conditions considered in this paper do not 
appear to be greatly boosted by Parity condition 2. In particular, 

Observation 16. Even in the presence of Parity condition 2, weak Borda double 
dominance does not imply traditional transitivity. 

Proof. There is a simple counter-example. The profile +Y, consisting of three in- 

dividuals whose preference orders are 

[il. [rt], [y] (thatis,G,j,and& 

is weakly Borda double dominant and clearly satisfies the Parity condition 2. Note 

that rR,t and tR,s but it is not the case that rR,s. 

Comment. In some sense, the equivalence between weak Borda double dominance 

and transfer of strict preference represents a strictly better theorem than Sen’s, since 

the assumption of weak Borda double dominance is weaker (applies to more pro- 

files) than Sen coherence, the conclusion of transfer of strict preference is stronger 

than Sen transitivity, and the implication is reversible. 

However, Parity condition 2 combines with Sen coherence in a surprisingly 

synergistic way-thus no result in this paper displaces the original parity-dependent 

form of Set-r’s Theorem. 

The effect of Parity condition 1 is more straightforward; clearly Net,(x>y) =0 



W.S. Zwicker / The voters’ paradox 223 

becomes impossible, since this would mean the number strictly preferring x to y 

would equal the number strictly preferring y to X, making the number concerned an 

even integer. This means that for no triangle G can any of GoU’s edge labels be 0, 

so that xR, y becomes synonymous with xP, y. 
An immediate consequence is that all five’ qualitative transitivity conditions 

become equivalent, so that (for example) the weakest dominance assumption, weak 

Borda dominance, implies the strongest qualitative transitivity (strong transitivity) 

in the presence of the Parity condition 1. Similarly, transfer of weak and strict 

preference become equivalent in the presence of the Parity condition 1. 
If %?L is a profile of strict preference orders only, then it is immediate that the two 

parity conditions become equivalent to each other, and to ‘the number of in- 

dividuals is odd’. It is straightforward to trace the strengthening effect of parity in 

the case of a profile of strict preference orders. 

By translating the two parity conditions into vote count terms, it becomes possible 

to establish the earlier claim that neither parity condition implies the other. It helps 

to fix attention on a given triple .s, t, r of alternatives. 

Lemma 17. Let % be a profile, s, t, and r be three distinct alternatives and Vote 
count (%) for s, t, r be (a, 6, c, d, e,f, g, h, i, j, k, 1). Then 

(a) The number of individuals concerned with each pair of alternatives from s, 
t, and r is odd if and only if both 

(i) a+b+c+d+e+f is odd, and 
(ii) g + h, i + j, and k + I have the same parity (i.e. each of the three is even, 

or each is odd). 
(b) The number of individuals concerned with s, t, and r (i.e. concerned with at 

least one pair of these alternatives) is odd if and only if 
(iii) a+b+c+d+e+f+g+h+i+j+k+l is odd. 

Since it is straightforward to construct an example of a 12 tuple satisfying (i) and 

(ii) but not (iii) (i.e. by having each pair sum in (ii) be odd), and another satisfying 

(iii)butnot(i)(byhavinga+b+c+d+e+fbeevenandg+h+i+j+k+lbeodd), 

we get 

Corollary 18. Neither of the two parity conditions implies the other (specifically, 
this is so when there are exactly three alternatives). 

Proof of Lemma 17. Note that (b) is immediate, since a + b + c + d+ e + f + g + h + 
i + j + k + 1 is the number of individuals concerned with at least one pair from among 

s, t, and r. 

’ Weak, Sen, Traditional, Strong transitivity, and Hereditarily Condorcet. 
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For (a), let 

Ql=a+b+c+d+e+f+g+h+i+j, 

and 

Q2=a+b+c+d+e+f+i+j+k+I, 

Q3=a+b+c+d+e+f+g+h+k+/. 

Observe that these three represent the number of individuals concerned with r and 

s, with r and t, and with s and t, respectively. Thus, we wish to establish that Ql, 

42, and 43 are each odd, if and only if (i) and (ii) both hold. 

(-) If Ql, Q2, and 43 are each odd, then so is their sum, Ql + Q2+Q3 = 

3[a+b+c+d+e+f]+2[g+h+i+j+k+I], from which it follows that a+b+c+ 
d + e +f is odd. This, together with Q l’s oddness, implies that g + h + i +j is even. 

Similarly, i +j + k + I and g + h + k + I are each even. Thus, we know about the three 

quantities g+ h, i+ j, and k-t I that the sum of any two of them is even. It is easy 

to see that this happens precisely when all three have the same parity. 

( +- ) It is straightforward to check that if (i) and (ii) both hold, then Ql, 42, and 

43 are all odd. 0 

Appendix: Mathematical comments and new directions 

Mathematical comment 1. These characterizations depend upon the assumption 

that G is a triangle, oriented in one standard way. The more general characteriza- 

tion, for an arbitrary directed graph, is that in the cyclic component the net flux into 

each node is zero, while in the cocyclic component the net flux around every loop 

is zero. This means that the cyclic component can be represented as a linear com- 

bination of unitary loop flows (Fig. 18). The cocyclic component can be represented 

as a linear combination of unitary sinks and sources (Fig. 19). These more general 

representations are non-unique when there are four or more nodes in the (complete) 

graph G. 

Mathematical comment 2. Actually, for any profile %, G, may be considered to 

be a vector in the space Vi [G]. Literally, Vi [G] is a free Z-module, but it can safely 

be thought of as the vector space the basis of which is the set of edges of G. 

The boundary map a of homology theory is a linear transform from V, [G] to the 

a unitary 

loop flow 

(all edges not pictured 
here would be labelled 
with zeros) 

Fig. 18. 
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e unitary 

source 
(all edges not pictured 
here would be labelled 
with zeros) 

Fig. 19. 

space Ve[G], which can be thought of as the vector space the basis of which is the 

set of vertices of G. The kernel of this map is a subspace of V,[G] known as the 

cycle subspace, 2, [Cl; this is discussed in Croom (1978) and Harary (1958). Any 

vector c in Vi [G] can be uniquely decomposed into a component in Z, [G] and a 

component orthogonal to Zr [G] (there is a natural inner product on these spaces). 

The ‘fundamental decomposition’ is precisely this decomposition, applied to G,. 

It follows immediately, then, that adding several vectors, then decomposing, has the 

same effect as decomposing before adding. It also follows that the fundamental 

decomposition is unique. 

In the special case that G is a triangle (whether because there are only three alter- 

natives or because we are focusing on alternatives three at a time, as throughout this 

paper), Z,[G] is one dimensional, which is why the cyclic component can be 

represented by a single scalar, the ‘spin’. It follows that the complementary 

subspace must be two dimensional, and isomorphic to a two-dimensional subspace 

of V,[G] (which is itself three-dimensional). See MC 4. 

Mathematical comment 3. Grzegorz Lissowski has commented that the fractional 

quantities that appear in the decomposition of an individual preference order are 

unintuitive. Perhaps this is so when one views G, solely as a labelled graph in 

which the edge labels represent information as to which of the endpoint vertices is 

preferred over the other; after all, one either prefers or does not and fractional 

preference is not in the picture for the voting systems we have in mind. When one 

realizes that the quantities are actually vectors, however, it becomes quite natural 

for a vector the components of which are entirely integer in one basis, to have a 

decomposition into vectors having non-integral components. We could fix the 

‘problem’ of fractional values in the cyclic and cocyclic components by tripling all 

edge labels in the definition of G,, but this does not seem natural. 

Mathematical comment 4. Under the appropriate choice of basis, @G,)= 

2(9, tY8,rS). These Borda counts always sum to zero, which is why the image of 

a is actually a two-dimensional subspace of the three-dimensional space I$[G]. 

Actually our choice of these weights (and of the fractional weights introduced for 

weak preference orders in Section 9) is derived from the boundary map &-the 

weights are chosen to make a(G,) proportional to (.?, tcB, rB). 
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Directions for new research 

Consider the map % ++ G, that assigns to each profile the corresponding 

labelled directed graph. As suggested by MC 2, this is actually a map from V, [G]l’v 

to V, [G], where INI is the number of individuals. This map, which is easily seen to 

be linear, will be denoted by x, and we will use the standard symbol 8 for the 

boundary map of homology. Let us define a social welfare function C to be one 

dimensional if it factors through x,---that is, C= C*ox,. 

Observation 19. For any profile 622, (a 0x,)( 4?L) is the vector the x component of 
which, for any alternative x, is just xS (x’s Borda count for the profile 021) scaled 
by a factor determined by the number of alternatives. Thus, the Borda count is one 
dimensional and any other one-dimensional social welfare function that ignores 
G,‘s cyclical component and is ‘linear’ must, in effect, be the Borda count (more 
precisely, any linear map with domain V, [G] and kernel containing Z, [G] must 
factor through a). 

A number of interesting questions are suggested by this observation. Which social 

welfare functions fail to be one dimensional, and how do they use the information 

not in xi(%)? Is there a useful description of xi’s ‘kernel’ (or of the part of the 

kernel these functions actually use)? How do the one-dimensional social welfare 

functions use the cyclical component of G, and/or fail to be linear? An important 

second example of a one-dimensional social welfare function is ‘take the transitive 

closure of R %‘; this is the same as peeling off Condorcet winners one at a time 

from the top, once those alternatives locked in cycles have been declared tied. 

One fairness principle, with many supporters, is that a good social welfare func- 

tion should choose the Condorcet winner whenever she exists. Indeed, one of Con- 

dorcet’s criticisms of the Borda count is that it sometimes fails this principle. 

Apparently, the phenomenon arises from masked cycles, in certain profiles, that 

shift the Condorcet winner away from the Borda winner. The decomposition of 

such profiles suggests there may exist some new counter-arguments to Condorcet’s 

criticism, and we hope to strengthen such counterarguments via some precise 

theorems. 

Empirical election data provide a third direction of exploration. We intend to 

apply the fundamental decomposition to real election returns to see what crops up, 

and also to determine the relative frequency of Borda double dominance (‘quan- 

titative’ transitivity) and Borda dominance (‘qualitative’ transitivity). 
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