MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 9

Problem 1. Let *A* be the 3×3 matrix shown below.

- (a) Compute det(A) by expanding along the second column.
- (b) Use the formula $A^{-1} = (\det A)^{-1} \operatorname{adj}(A)$ to compute the inverse of A.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Problem 2.

- (a) Use the permutation expansion of the determinant to prove that the determinant of an upper triangular matrix is the product of its diagonal entries.
- (b) Use the cofactor expansion of the determinant to prove the same result.

Problem 3. If $\sigma \in \Sigma_n$ is a permutation of the set $\{1, \ldots, n\}$ and F is a field, recall that the permutation matrix $P_{\sigma} \in M_{n \times n}(F)$ has $e_{\sigma(i)}$ as its *i*-th column. Prove the following statements.

- (a) $P_{\sigma \circ \tau} = P_{\sigma} P_{\tau}$ for all $\sigma, \tau \in S_n$.
- (b) The set $\{P_{\sigma} : \sigma \in S_n\}$ is equal to the set of all matrices in $M_{n \times n}(F)$ having exactly one 1 in every row and column, and zeros elsewhere.