MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 9

Problem 1. Compute the determinant of

$$
\left(\begin{array}{ccc}
2 & 2 & 1 \\
3 & -1 & 0 \\
-2 & 0 & 5
\end{array}\right)
$$

via its permutation expansion, via cofactor expansion, and also via Gauss-Jordan reduction. Which took the fewest number of steps?
Problem 2 (Cramer's Rule). Suppose that $A \in M_{n \times n}(F)$ is invertible and that we want to solve the system of linear equations $A x=b$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ are regarded as column vectors. (Here, the x_{i} are variables and the b_{i} are scalars.)
(a) Assuming $A x=b$, show that $(\operatorname{det} A) x=\operatorname{adj}(A) b$.
(b) Show that $x_{i}=\frac{\operatorname{det}\left(B_{i}\right)}{\operatorname{det}(A)}$, where B_{i} is obtained by replacing the i-th column of A with b.
(c) Use Cramer's Rule to solve the system

$$
\begin{aligned}
2 x-3 y & =1, \\
x+5 y & =4 .
\end{aligned}
$$

Problem 3. Let

$$
M=\left(\begin{array}{ccc}
2 & 0 & -1 \\
4 & 1 & -4 \\
2 & 0 & -1
\end{array}\right) \in M_{3 \times 3}(\mathbb{R}) .
$$

Check that $(1,4,2),(1,0,1)$, and $(0,1,0)$ are linearly independent eigenvectors of M. Use this to determine a diagonal matrix to which M is similar ($M=P D P^{-1}$ for D diagonal).
Problem 4. Let $f: V \rightarrow V$ be a linear transformation. Set $f^{0}=\operatorname{id}_{V}$ and for $m \geq 1$ set $f^{m}=f \circ f^{m-1}$ (so $f^{1}=f, f^{2}=f \circ f, f^{3}=f \circ f \circ f$, etc.). Suppose that λ is an eigenvalue of f. Prove that λ^{m} is an eigenvalue of f^{m} for all $m \in \mathbb{N}$.
Problem 5. Let $T: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ be the map $T(A)=A^{T}$, the transpose of A.
(a) Show that the only eigenvalues of T are ± 1. (Hint: Use the previous problem.)
(b) For $n=2$, describe the eigenvectors corresponding to each eigenvalue.
(c) Find an ordered basis α for $M_{2 \times 2}(\mathbb{R})$ such that the matrix representing T with respect to α is diagonal.
(d) [Bonus] Repeat parts (b) and (c) for an arbitrary $n>2$.

