MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 8

Problem 1. Let V and W be finite-dimensional vector spaces and let $\varphi \in \mathcal{L}(V, W)$.
(a) Show that φ^{*} is injective if and only if φ is surjective.
(b) Show that φ^{*} is surjective if and only if φ is injective.

Problem 2. The trace of a square matrix is defined to be the sum of its diagonal entries. Let A be a 2×2 matrix with entries in a field. Prove that $\operatorname{det}(A+I)=\operatorname{det}(A)+\operatorname{det}(I)$ if and only if $\operatorname{trace}(A)=0$.

Problem 3 (Vandermonde determinant). Prove that the determinant of the matrix

$$
\left(\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right)
$$

is $(b-a)(c-a)(c-b)$.

Problem 4.

(a) A square matrix A is called orthogonal if $A A^{t}=I$, where A^{t} denotes the transpose of A. Show that if A is an orthogonal matrix, then $\operatorname{det}(A)= \pm 1$. Give an example of an orthogonal matrix A for which $\operatorname{det}(A)=-1$.
(b) A square matrix A over a field F is called skew-symmetric if $A^{t}=-A$. Show that if n is odd and $F=\mathbb{C}$, then no $n \times n$ skew-symmetric matrix A is invertible.

