MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 8

Problem 1. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2
\end{array}\right)
$$

Find elementary matrices E_{1}, \ldots, E_{ℓ} such that $E_{\ell} \cdots E_{2} E_{1} A$ is the reduced echelon form of A. (Check your work.)

In the next two exercises we will prove that the determinant is multiplicative, that is, that for $n \times n$ matrices A and B,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Problem 2. Let B be a fixed $n \times n$ matrix over F such that $\operatorname{det}(B) \neq 0$. Consider the function

$$
d: M_{n \times n}(F) \longrightarrow F
$$

defined by $d(A)=\operatorname{det}(A B) / \operatorname{det}(B)$. You will prove that $d(A)=\operatorname{det}(A)$. For a matrix A, we write $\left(r_{1}, \ldots, r_{n}\right)$ for the rows of A, with each $r_{i} \in F^{n}$.
(a) Prove that d is multilinear on rows, that is, d satisfies that

$$
d\left(r_{1}, \ldots, r_{i}+k \cdot r_{i}^{\prime}, \ldots, r_{n}\right)=d\left(r_{1}, \ldots, r_{i}, \ldots, r_{n}\right)+k d\left(r_{1}, \ldots, r_{i}^{\prime}, \ldots, r_{n}\right)
$$

for all $r_{1}, \ldots, r_{n}, r_{i}^{\prime} \in F^{n}$ and any $k \in F$.
(Some suggested notation to help in your proof: let c_{1}, \ldots, c_{n} be the columns of B. Then

$$
(A B)_{s, t}=r_{s} \cdot c_{t}
$$

i.e., the s, t-entry of $A B$ is the dot product of the s-th row of A with the t-th column of B. Recall that the dot product is defined by $\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}$. Letting A^{\prime} be the matrix with rows $\left(r_{1}, \ldots, r_{i}^{\prime}, \ldots, r_{n}\right)$ and $A^{\prime \prime}$ the matrix with rows $\left(r_{1}, \ldots, r_{i}+k r_{i}^{\prime}, \ldots, r_{n}\right)$, you will need compare the rows of $A B, A^{\prime} B$ and $A^{\prime \prime} B$.)
(b) Prove that d is alternating on rows, that is, d satisfies that $d\left(r_{1}, \ldots, r_{n}\right)=0$ if $r_{i}=r_{j}$ for some $i \neq j$.
(c) Prove that $d\left(I_{n}\right)=1$.
(d) Deduce that for all A, we have that $d(A)=\operatorname{det}(A)$, and that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Problem 3. We still need to prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ when $\operatorname{det}(B)=0$.
(a) Let $f: V \rightarrow W$ and $g: W \rightarrow U$ be linear transformations of finite dimensional vector spaces over F. Show that

$$
\operatorname{ker}(f) \subseteq \operatorname{ker}(g \circ f) \quad \text { and } \quad \operatorname{im}(g \circ f) \subseteq \operatorname{im}(g)
$$

(b) Use part (a) to prove that $\operatorname{rank}(g \circ f) \leq \operatorname{rank}(f)$ and $\operatorname{rank}(g \circ f) \leq \operatorname{rank}(g)$. (Hint: For one of them you might need to use the rank-nullity theorem.)
(c) Let A be an $m \times n$ matrix over F, and B an $n \times p$ matrix over F. Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(d) Conclude that if both A and B are $n \times n$ matrices such that either $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$, then $\operatorname{det}(A B)=0$.

