MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 7

Problem 1. Let F be a field and $T: F^{n} \rightarrow F^{n}$ a linear transformation. Let A be the matrix of T with respect to the standard ordered basis of F^{n}. Show that the column space of A is equal to the image of T.

Problem 2. Let V be a two-dimensional vector space, and let B be an ordered basis for V. Let $T \in \mathcal{L}(V, V)$, and suppose that the matrix of T with respect to B is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Show that

$$
T^{2}-(a+d) T+(a d-b c) I=0
$$

where $T^{2}=T \circ T$ and $I \in \mathcal{L}(V, V)$ is the identity map.
Problem 3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(x, y, z)=(3 x, x-y, 2 x+y+z)
$$

Show that T is an isomorphism and find an explicit description of its inverse.
Problem 4 (Bonus). Let V and W be finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$. Show that there exist bases B and B^{\prime} for V and W, respectively, so that the matrix A of T with respect to these bases satisfies $A_{i i}=1$ for $1 \leq i \leq \operatorname{rank}(T)$, and all other entries of A are 0 .

