MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 7

Problem 1. Let *F* be a field and $T : F^n \to F^n$ a linear transformation. Let *A* be the matrix of *T* with respect to the standard ordered basis of F^n . Show that the column space of *A* is equal to the image of *T*.

Problem 2. Let *V* be a two-dimensional vector space, and let *B* be an ordered basis for *V*. Let $T \in \mathcal{L}(V, V)$, and suppose that the matrix of *T* with respect to *B* is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show that

$$T^{2} - (a+d)T + (ad-bc)I = 0,$$

where $T^2 = T \circ T$ and $I \in \mathcal{L}(V, V)$ is the identity map.

Problem 3. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

T(x, y, z) = (3x, x - y, 2x + y + z).

Show that T is an isomorphism and find an explicit description of its inverse.

Problem 4 (Bonus). Let *V* and *W* be finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$. Show that there exist bases *B* and *B'* for *V* and *W*, respectively, so that the matrix *A* of *T* with respect to these bases satisfies $A_{ii} = 1$ for $1 \le i \le \operatorname{rank}(T)$, and all other entries of *A* are 0.