MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 7

Problem 1. Let $V = \mathbb{R}[x]_{\leq 5}$ be the \mathbb{R} -vector space of polynomials with coefficients in \mathbb{R} in the variable x of degree at most 5 with $\{1, x, x^2, \ldots, x^5\}$ as basis. Prove that the following are elements of V^* and express them as linear combinations of the dual basis.

- (a) $e: V \to \mathbb{R}$ defined by e(p) = p(3) (*i.e.*, evaluation at x = 3).
- (b) $\varphi: V \to \mathbb{R}$ defined by $\varphi(p) = \int_0^1 p(t) dt$.
- (c) $\vartheta: V \to \mathbb{R}$ defined by $\vartheta(p) = p'(5)$, where p' denotes the usual derivative of p with respect to x.

Problem 2. Recall that if $\varphi : V \to W$ is a linear transformation, then $\varphi^* : W^* \to V^*$ is the linear transformation taking f to $f \circ \varphi$.

- (a) Prove that if $\varphi : V \to W$ and $\psi : W \to U$ are linear transformations, then $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$.
- (b) Use (a) and the theorem from class relating dual transformations and transpose matrices to prove that $(AB)^T = B^T A^T$ whenever $A \in M_{m \times p}(F)$ and $B \in M_{p \times n}(F)$.

Problem 3. For every subset *S* of a vector space *V*, show that $S^{\circ} = \{f \in V^* \mid f(s) = 0 \text{ for all } s \in S\}$ is a subspace of V^* .

Problem 4. Suppose that *S* is a subspace of *V* and let $i : S \to V$ denote the inclusion map given by i(s) = s. Prove that $im(i^*) = S^*$.