MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 7

Problem 1. Let $V=\mathbb{R}[x]_{\leq 5}$ be the \mathbb{R}-vector space of polynomials with coefficients in \mathbb{R} in the variable x of degree at most 5 with $\left\{1, x, x^{2}, \ldots, x^{5}\right\}$ as basis. Prove that the following are elements of V^{*} and express them as linear combinations of the dual basis.
(a) $e: V \rightarrow \mathbb{R}$ defined by $e(p)=p(3)$ (i.e., evaluation at $x=3)$.
(b) $\varphi: V \rightarrow \mathbb{R}$ defined by $\varphi(p)=\int_{0}^{1} p(t) d t$.
(c) $\vartheta: V \rightarrow \mathbb{R}$ defined by $\vartheta(p)=p^{\prime}(5)$, where p^{\prime} denotes the usual derivative of p with respect to x.

Problem 2. Recall that if $\varphi: V \rightarrow W$ is a linear transformation, then $\varphi^{*}: W^{*} \rightarrow V^{*}$ is the linear transformation taking f to $f \circ \varphi$.
(a) Prove that if $\varphi: V \rightarrow W$ and $\psi: W \rightarrow U$ are linear transformations, then $(\psi \circ \varphi)^{*}=\varphi^{*} \circ \psi^{*}$.
(b) Use (a) and the theorem from class relating dual transformations and transpose matrices to prove that $(A B)^{T}=B^{T} A^{T}$ whenever $A \in M_{m \times p}(F)$ and $B \in M_{p \times n}(F)$.
Problem 3. For every subset S of a vector space V, show that $S^{\circ}=\left\{f \in V^{*} \mid f(s)=0\right.$ for all $\left.s \in S\right\}$ is a subspace of V^{*}.
Problem 4. Suppose that S is a subspace of V and let $i: S \rightarrow V$ denote the inclusion map given by $i(s)=s$. Prove that $\operatorname{im}\left(i^{*}\right)=S^{*}$.

