MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 6

Problem 1. Carry out the matrix multiplications

$$
\left(\begin{array}{cc}
i & 1-i \\
1+i & 2 i
\end{array}\right)\left(\begin{array}{cc}
1 & 3 \\
i & 2
\end{array}\right),\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)(3,1,1), \text { and }\left(\begin{array}{cc}
3 & -1 \\
1 & 6
\end{array}\right)\binom{5}{2}
$$

where the fields of scalars are \mathbb{C}, \mathbb{Q}, and $\mathbb{Z} / 7 \mathbb{Z}$, respectively.
Problem 2. The transpose of a matrix A is the matrix A^{t} defined by $\left(A^{t}\right)_{i j}=A_{j i}$.
(a) Show that the rows of A^{t} are the columns of A, and vice versa.
(b) Show that if A and B are matrices for which the product $A B$ is defined, then $B^{t} A^{t}$ is defined and $(A B)^{t}=B^{t} A^{t}$.

Problem 3. Let A be an $m \times n$ matrix and B an $n \times p$ matrix. Let b_{1}, \ldots, b_{p} be the columns of B, labeled from left to right and regarded as $n \times 1$ matrices. Show that the columns of $A B$ are $A b_{1}, \ldots, A b_{p}$.

