MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 6

Problem 1. Carry out the matrix multiplications

$$\begin{pmatrix} i & 1-i \\ 1+i & 2i \end{pmatrix} \begin{pmatrix} 1 & 3 \\ i & 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} (3,1,1), \text{ and } \begin{pmatrix} 3 & -1 \\ 1 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix},$$

where the fields of scalars are \mathbb{C}, \mathbb{Q} , and $\mathbb{Z}/7\mathbb{Z}$, respectively.

Problem 2. The *transpose* of a matrix A is the matrix A^t defined by $(A^t)_{ij} = A_{ji}$.

- (a) Show that the rows of A^t are the columns of A, and vice versa.
- (b) Show that if A and B are matrices for which the product AB is defined, then $B^t A^t$ is defined and $(AB)^t = B^t A^t$.

Problem 3. Let *A* be an $m \times n$ matrix and *B* an $n \times p$ matrix. Let b_1, \ldots, b_p be the columns of *B*, labeled from left to right and regarded as $n \times 1$ matrices. Show that the columns of *AB* are Ab_1, \ldots, Ab_p .