MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 6

Problem 1. Let F be a field.
(a) Find $A, B \in M_{2 \times 2}(F)$ that do not commute with each other under multiplication: $A B \neq B A$.
(b) A square matrix A is called diagonal if it is of the form $a I$ for $a \in F$ and I the identity matrix. Show that if $A \in M_{2 \times 2}(F)$ is diagonal, then $A B=B A$ for all $B \in M_{2 \times 2}(F)$.
(c) [Bonus] The set of matrices $A \in M_{2 \times 2}(F)$ commuting (under multiplication) with all $B \in$ $M_{2 \times 2}(F)$ is called the center of $M_{2 \times 2}(F)$. In part (b), you showed that every diagonal matrix is in the center of $M_{2 \times 2}(F)$. Prove the opposite inclusion, concluding that the center of $M_{2 \times 2}(F)$ is the set of diagonal matrices.
(d) [Bonus] For a fixed $A \in M_{2 \times 2}(F)$, the centralizer of A is the set of $B \in M_{2 \times 2}(F)$ such that $A B=B A$ (i.e., the centralizer of A is the set of matrices commuting with A). Determine the centralizer of A. Hint: The answer will depend on whether or not A is diagonal.
Problem 2. Let $\mathbb{R}[x]_{\leq n}$ be the vector space of polynomials in x with coefficients in \mathbb{R} and degree at most n. Define $f: \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 2}$ to be the linear transformation given by

$$
f(p(x))=(2+x) \cdot p^{\prime}(x)+3 p(x)
$$

and define $g: \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}^{3}$ to be the linear transformation given by

$$
g\left(a+b x+c x^{2}\right)=(a-b, c, a+b)
$$

Let $B=\left\{1, x, x^{2}\right\}$ be an ordered basis for $\mathbb{R}[x]_{\leq 2}$ and let $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard ordered basis for \mathbb{R}^{3}.
(a) Compute the matrix representing f with respect to the ordered basis B for both the domain and codomain.
(b) Compute the matrix representing g with respect to the ordered bases B and E.
(c) Compute the matrix representing $g \circ f$ with respect to the basis B and E. Then use Theorem 2.7 of Chapter Three, §IV to verify your result.

Problem 3. Using the notation of Problem 2, define

$$
\begin{aligned}
f: \mathbb{R}[x]_{\leq 2} & \rightarrow \mathbb{R}[x]_{\leq 3} \\
p & \mapsto \int_{0}^{x} p(t) d t .
\end{aligned}
$$

Verify that f is a linear transformation and compute the matrix representing f with respect to the ordered bases $\left\{1, x, x^{2}\right\}$ for $\mathbb{R}[x]_{\leq 2}$ and $\left\{1, x, x^{2}, x^{3}\right\}$ for $\mathbb{R}[x]_{\leq 3}$.
Problem 4. Use the algorithm from class to determine whether the following matrices are invertible; if invertible, write down the associated inverse matrix. (N.B. You can easily check if your answer is correct!)

$$
A=\left(\begin{array}{cc}
17 & 29 \\
7 & 12
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & -5 & 3 \\
9 & -5 & 2 \\
4 & 0 & 1
\end{array}\right)
$$

