MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 5

Problem 1. Let $V=F[x]_{\leq 2}$ be the vector space of polynomials with coefficients in F of degree ≤ 2. For $k \in F$, let $S_{k}: V \rightarrow V$ be the function taking $f(x)$ to $f(x-k)$. Check that S_{k} is a linear transformation and prove that it is an isomorphism.

Problem 2. Let V and W be F-vector spaces. Recall from Lemma 1.17 of Three.II. 1 in the book that the set $\mathcal{L}(V, W)$ of linear transformations from V to W forms an F-vector space. The dual of V is defined to be the vector space $V^{*}:=\mathcal{L}(V, F)$.
(a) Suppose that V is finite dimensional with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. For $1 \leq i \leq n$, let $v_{i}^{*} \in V^{*}$ be the linear transformation such that $v_{i}^{*}\left(v_{i}\right)=1$ and $v_{i}^{*}\left(v_{j}\right)=0$ for $j \neq i$. Prove that $\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ is a basis for V^{*} and conclude that $\operatorname{dim} V^{*}=n$ as well.
(b) [Bonus] By part (a), we see that $V \cong V^{*}$ when V is finite dimensional. Prove that $V \not \approx V^{*}$ for $V=\mathbb{R}[x]$.

Problem 3. Draw the image of the unit square $[0,1] \times[0,1] \subseteq \mathbb{R}^{2}$ under the following linear transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, making sure to clearly label the image of e_{1} and e_{2} in each diagram. Also state what the rank and nullity of each map is (no proof required).
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(2 x-y, x+y)$.
(b) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the linear transformation taking $(1,0)$ to $(1,1)$ and $(0,1)$ to $(-1,1)$.
(c) $h=R_{\pi / 4} \circ \pi_{1}$ where $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\pi_{1}(x, y)=(x, 0)$ and $R_{\pi / 4}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the rotation by $\pi / 4$ map.
(d) $i=\pi_{1} \circ R_{\pi / 4}$.
(e) $j=\ell \circ k$ where k is reflection through the y-axis and ℓ is reflection through the line $y=-x$.

