MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 4

Problem 1. Let *V* be a finite-dimensional vector space, and let *U* be a subspace of *V*.

- (a) Prove that U is finite-dimensional.
- (b) Prove that $\dim(U) \leq \dim(V)$.
- (c) Prove that if $\dim(U) = \dim(V)$, then U = V.
- (d) Prove that the only subspaces of \mathbb{R}^2 are $\{0\}, \mathbb{R}^2$, and all lines through the origin.

Problem 2. Prove that \mathbb{R} is not finite-dimensional as a vector space over \mathbb{Q} . (Hint: the set of real numbers is *uncountable*, so there is no bijection $\mathbb{R} \leftrightarrow \mathbb{Q}$, and more generally, no bijection $\mathbb{R} \leftrightarrow \mathbb{Q}^n$ for any positive integer *n*.)