MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 4

Problem 1. Consider the matrix $M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 2 \\ 5 & 1 & 2 \end{pmatrix}$.

(a) Determine a basis for the row space of M. Is the vector $(7\ 7\ 6)$ in the row space of M?

(b) Determine a basis for the column space of *M*. Is the vector $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ in the column space of *M*?

Problem 2. Answer the following questions about rank, proving your assertions.

- (a) Which matrices have rank 0?
- (b) Which matrices have rank 1?
- (c) What is the maximal rank of an $m \times n$ matrix?

Problem 3. For each of the following functions, determine (with proof) whether or not the function is a linear transformation.

- (a) $f : \mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto x + 2y$.
- (b) $g : \mathbb{R} \to \mathbb{R}$ given by $x \mapsto 3x + 1$.
- (c) $d/dx : D \to \mathbb{R}^{\mathbb{R}}$ given by $f \mapsto df/dx = f'$ where $D \subseteq \mathbb{R}^{\mathbb{R}}$ is the subspace of everywhere differentiable functions $\mathbb{R} \to \mathbb{R}$. (You may assume that *D* is a subspace.)
- (d) $ev_0 : \mathcal{L}(V, W) \to W$ given by $f \mapsto f(0)$ where V, W are *F*-vector spaces and $\mathcal{L}(V, W)$ is the *F*-vector space of linear transformations $V \to W$. (We call ev_0 the *evaluation at* 0 function.)