MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 3

Problem 1.

(a) Prove that if two vectors are linearly dependent, then one of them must be a scalar multiple of the other.
(b) Regarding \mathbb{C} as a vector space over \mathbb{C}, show that the vectors $1+i$ and $1-i$ are linearly dependent.
(c) Find three vectors in \mathbb{R}^{3} which are linearly dependent, and are such that any two of them are linearly independent.

Problem 2. Prove or give a counterexample.
(a) If $v_{1} \ldots, v_{m}$ are linearly independent and λ is a nonzero scalar, then $\lambda v_{1} \ldots, \lambda v_{m}$ are linearly independent.
(b) If $v_{1} \ldots, v_{m}$ and $w_{1} \ldots, w_{m}$ are lists of linearly independent vectors, then $v_{1}+w_{1}, \ldots, v_{m}+w_{m}$ are linearly independent.

