MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 3

Problem 1.

- (a) Prove that if two vectors are linearly dependent, then one of them must be a scalar multiple of the other.
- (b) Regarding \mathbb{C} as a vector space over \mathbb{C} , show that the vectors 1 + i and 1 i are linearly dependent.
- (c) Find three vectors in \mathbb{R}^3 which are linearly dependent, and are such that any two of them are linearly independent.

Problem 2. Prove or give a counterexample.

- (a) If $v_1 \dots, v_m$ are linearly independent and λ is a nonzero scalar, then $\lambda v_1 \dots, \lambda v_m$ are linearly independent.
- (b) If $v_1 \ldots, v_m$ and $w_1 \ldots, w_m$ are lists of linearly independent vectors, then $v_1 + w_1, \ldots, v_m + w_m$ are linearly independent.