MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 3

Problem 1. In each of the cases, write v as a linear combination of the linearly independent vectors in B. (You do not need to prove that B is linearly independent.) The ambient vector space should be clear from context.
(a) $v=(-8,5), B=\{(1,0),(0,1)\}$
(b) $v=(-8,5), B=\{(5,2),(2,1)\}$
(c) $v=x^{2}+3 x+2, B=\left\{1, x-1,(x-1)^{2}\right\}$
(d) $v:\{1,2,3\} \rightarrow \mathbb{R}$ with $v(1)=-2, v(2)=1, v(3)=\sqrt{2}, B=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$ with $\chi_{i}(j)=1$ if $i=j$ and $\chi_{i}(j)=0$ if $i \neq j$.

Problem 2. Determine whether each of the following statements is true or false. If true, prove it; if false, provide a counterexample.
(a) Every subset of a linearly dependent set is linearly dependent.
(b) A vector space cannot have more than one basis.
(c) The span of the empty set is the empty set.
(d) If S is a linearly dependent set, then every vector in S is a linear combination of the other vectors in S.

Problem 3. For each of the following vector spaces, find a basis and prove that it is a basis.
(a) The F-vector space $U=\left\{a+b x+c x^{2}+d x^{3} \mid a+4 b-3 c+d=0\right\}$ considered as a subspace of $F[x]$, the vector space of polynomials with coefficients in \mathbb{Q}.
(b) The F-vector space $V=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, b=c\right\}$ considered as a subspace of $M_{2 \times 2}(F)$.
(c) The F-vector space $\operatorname{Sym}_{n}(F)=\left\{A \in M_{n \times n}(F) \mid A_{i, j}=A_{j, i}\right.$ for $\left.1 \leq i, j \leq n\right\}$ of "symmetric" matrices inside $M_{n \times n}(F)$. (This generalizes (b).)

