MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 2

Problem 1. In each of the following instances, v is a vector in a vector space V and S is a subset of V. Determine whether or not v is in the span of S by either expressing v as a linear combination of elements of S or showing that no such linear combination exists.
(a) $V=\mathbb{R}^{2}, S=\{(5,2),(2,1)\}, v=(49,18)$
(b) $V=\mathbb{Q}[x]$ (polynomials in x with coefficients in \mathbb{Q}), $S=\left\{x^{2}+5 x-1,-2 x^{4}+x^{3}+3 x^{2}-4,-3 x^{3}+\right.$ $\left.2 x^{2}\right\}, v=x^{4}+x^{3}+x^{2}+x+1$
(c) $V=M_{2 \times 2}(\mathbb{C})(2 \times 2$ matrices with entries in $\mathbb{C}), S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}, v=\left(\begin{array}{ll}1 & 2 \\ 2 & 0\end{array}\right)$

Problem 2. Let $\mathbb{R}^{\mathbb{R}}$ denote the \mathbb{R}-vector space consisting of functions $f: \mathbb{R} \rightarrow \mathbb{R}$. (The vector space structure is given by $(f+g)(x)=f(x)+g(x)$ and $(c f)(x)=c(f(x))$.) Consider the following subsets of $\mathbb{R}^{\mathbb{R}}$ and determine (with proof) whether they are subspaces.
(a) The set of even functions $\mathscr{E}=\left\{f \in \mathbb{R}^{\mathbb{R}} \mid f(x)=f(-x)\right.$ for all $\left.x \in \mathbb{R}\right\}$.
(b) The set of odd functions $\mathscr{O}=\left\{f \in \mathbb{R}^{\mathbb{R}} \mid-f(x)=f(-x)\right.$ for all $\left.x \in \mathbb{R}\right\}$.
(c) The set of functions which vanish at $0, V=\left\{f \in \mathbb{R}^{\mathbb{R}} \mid f(0)=0\right\}$.
(d) The set of functions which have limit 0 as $x \rightarrow 0, L=\left\{f \in \mathbb{R}^{\mathbb{R}} \mid \lim _{x \rightarrow 0} f(x)=0\right\}$.
(e) The set of functions which take the value 1 at $0, W=\left\{f \in \mathbb{R}^{\mathbb{R}} \mid f(0)=1\right\}$.

