MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 2

Problem 1. In each of the following instances, v is a vector in a vector space V and S is a subset of V. Determine whether or not v is in the span of S by either expressing v as a linear combination of elements of S or showing that no such linear combination exists.

- (a) $V = \mathbb{R}^2$, $S = \{(5, 2), (2, 1)\}$, v = (49, 18)
- (b) $V = \mathbb{Q}[x]$ (polynomials in x with coefficients in \mathbb{Q}), $S = \{x^2 + 5x 1, -2x^4 + x^3 + 3x^2 4, -3x^3 + 2x^2\}$, $v = x^4 + x^3 + x^2 + x + 1$
- (c) $V = M_{2 \times 2}(\mathbb{C}) (2 \times 2 \text{ matrices with entries in } \mathbb{C}), S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, v = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$

Problem 2. Let $\mathbb{R}^{\mathbb{R}}$ denote the \mathbb{R} -vector space consisting of functions $f : \mathbb{R} \to \mathbb{R}$. (The vector space structure is given by (f + g)(x) = f(x) + g(x) and (cf)(x) = c(f(x)).) Consider the following subsets of $\mathbb{R}^{\mathbb{R}}$ and determine (with proof) whether they are subspaces.

- (a) The set of even functions $\mathscr{E} = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \text{ for all } x \in \mathbb{R} \}.$
- (b) The set of odd functions $\mathscr{O} = \{f \in \mathbb{R}^{\mathbb{R}} \mid -f(x) = f(-x) \text{ for all } x \in \mathbb{R}\}.$
- (c) The set of functions which vanish at 0, $V = \{f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 0\}$.
- (d) The set of functions which have limit 0 as $x \to 0$, $L = \{f \in \mathbb{R}^{\mathbb{R}} \mid \lim_{x \to 0} f(x) = 0\}$.
- (e) The set of functions which take the value 1 at 0, $W = \{f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 1\}$.