MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 1

Problem 1. For each of the following systems of linear equations,
(i) find the associated augmented matrix M,
(ii) compute the reduced row echelon form E for M (show your work as in class, specifying your row operations), and
(iii) from E, determine whether there are solutions to the system; if there is a unique solution, state it; if there are infinitely many solutions, express the solutions in two ways: (1) parametrically, and (2) in vector form.
(a)

$$
\begin{aligned}
-2 x+y+z & =1 \\
2 x-y-4 z & =0 \\
3 x-y+3 z & =1
\end{aligned}
$$

(b)

$$
\begin{aligned}
2 x+2 y+6 z & =6 \\
-2 x+2 y+2 z & =-2 \\
4 x+6 y+16 z & =8
\end{aligned}
$$

(c)

$$
\begin{aligned}
2 x+y-2 z & =5 \\
y-z & =-1 \\
x-y+z & =5
\end{aligned}
$$

(d)

$$
\begin{aligned}
x-y-\frac{3}{2} & =-1 \\
\frac{3}{2}-\frac{3}{2} y-z+\frac{5}{2} w & =\frac{7}{2} \\
\frac{1}{2} x-\frac{1}{2} y-z-\frac{1}{2} w & =-\frac{3}{2}
\end{aligned}
$$

(e)

$$
\begin{array}{r}
x+y+3 z=4 \\
x+2 y+4 z=5
\end{array}
$$

Problem 2. Some questions about conics.
(a) Let $y=p x^{2}+q x+r$ be the equation of a general parabola. By solving a system of equations, find constants p, q, and r so that the resulting parabola passes through the points $(2,-15)$, $(-3,-1)$, and $(-11,-2)$. Is this the only such parabola?
(b) A real plane conic is a set of points of the form

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid a x^{2}+b x y+c y^{2}+d x+e y+f=0\right\}
$$

where a, b, c, d, e, f are constants in \mathbb{R}, not all 0 .
(i) What happens to a real plane conic if a, b, c, d, e, f are replaced by $\lambda a, \lambda b, \lambda c, \lambda d, \lambda e, \lambda f$ for λ a nonzero real number?
(ii) Show that the unit circle centered at the origin in \mathbb{R}^{2} is an example of a real plane conic. What is the collection of $(a, b, c, d, e, f) \in \mathbb{R}^{6}$ such that the resulting real plane conic is the unit circle centered at the origin in \mathbb{R}^{2} ? Which (a, b, c, d, e, f) specify the parabola from part (a)?
(iii) In part (a), three points specified a parabola. How many points in the plane specify a general real plane conic? Why? (Feel free to argue heuristically; we have not yet covered enough linear algebra to formally solve this.)

