MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 13

Problem 1. Let $S = \{(1,0,i), (1,2,1)\}$ in \mathbb{C}^3 (with the standard inner product). Compute S^{\perp} .

Problem 2. Let A be an $m \times n$ matrix over F (where $F = \mathbb{R}$ or \mathbb{C}). Note that both colspace(A^*) and nullspace(A) are subspaces of F^n . Using the standard inner product on F^n , prove that

 $(\operatorname{colspace}(A^*))^{\perp} = \operatorname{nullspace}(A).$

 $\underline{\wedge}$ Beware that ()* denotes conjugate transpose and not duality in this context.

Problem 3. Let V be the vector space of all continuous functions $[0,1] \to \mathbb{R}$ with inner product $\langle f,g \rangle = \int_0^1 f(t)g(t) dt$. Let W be the subspace spanned by $\{t,\sqrt{t}\}$. (*Note:* You can — and should! — check your answers in this problem.)

- (a) Apply Gram-Schmidt to $\{t, \sqrt{t}\}$ to compute an orthonormal basis $\{u_1, u_2\}$ for W.
- (b) Find the closest function in W to $f(t) = t^2$. Express your solution in two forms: (i) as a linear combination of u_1 and u_2 , and (ii) as a linear combination of t and \sqrt{t} .