MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 13

Problem 1. Let $S=\{(1,0, i),(1,2,1)\}$ in \mathbb{C}^{3} (with the standard inner product). Compute S^{\perp}.
Problem 2. Let A be an $m \times n$ matrix over F (where $F=\mathbb{R}$ or \mathbb{C}). Note that both colspace $\left(A^{*}\right)$ and nullspace (A) are subspaces of F^{n}. Using the standard inner product on F^{n}, prove that

$$
\left(\operatorname{colspace}\left(A^{*}\right)\right)^{\perp}=\operatorname{nullspace}(A) .
$$

© Beware that ($)^{*}$ denotes conjugate transpose and not duality in this context.
Problem 3. Let V be the vector space of all continuous functions $[0,1] \rightarrow \mathbb{R}$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Let W be the subspace spanned by $\{t, \sqrt{t}\}$. (Note: You can - and should! - check your answers in this problem.)
(a) Apply Gram-Schmidt to $\{t, \sqrt{t}\}$ to compute an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ for W.
(b) Find the closest function in W to $f(t)=t^{2}$. Express your solution in two forms: (i) as a linear combination of u_{1} and u_{2}, and (ii) as a linear combination of t and \sqrt{t}.

