MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 13

Problem 1. Find the least squares line of best fit to the following points in $\mathbb{R}^{2}:(-1,0),(1,4),(2,4),(3,6)$ via the following methods:
(a) Using Gram-Schmidt to compute an orthogonal projection.
(b) Using the adjoint of a matrix.

Problem 2 (Bonus). Let V be a finite-dimensional inner product space over the field $F=\mathbb{R}$ or \mathbb{C}, and let $f \in \mathcal{L}(V)$ be a linear operator on V.
(a) Show that there exists a unique linear operator $f^{\dagger} \in \mathcal{L}(V)$ with the property that

$$
\langle f(x), y\rangle=\left\langle x, f^{\dagger}(y)\right\rangle \quad \text { for all } x, y \in V .
$$

(b) Suppose that α is an orthonormal ordered basis for V, and let $A=M_{\alpha}(f)$ be the matrix representing f with respect to α. Show that $A^{\dagger}=M_{\alpha}\left(f^{\dagger}\right)$, where A^{\dagger} denotes the conjugate transpose of A.
(c) Let A be an $m \times n$ matrix over F. Show that $(A x) \cdot y=x \cdot\left(A^{\dagger} y\right)$ for all $x \in F^{n}$ and $y \in F^{m}$.

