MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 13

Problem 1. Find the least squares line of best fit to the following points in \mathbb{R}^2 : (-1, 0), (1, 4), (2, 4), (3, 6) via the following methods:

- (a) Using Gram-Schmidt to compute an orthogonal projection.
- (b) Using the adjoint of a matrix.

Problem 2 (Bonus). Let V be a finite-dimensional inner product space over the field $F = \mathbb{R}$ or \mathbb{C} , and let $f \in \mathcal{L}(V)$ be a linear operator on V.

(a) Show that there exists a unique linear operator $f^{\dagger} \in \mathcal{L}(V)$ with the property that

$$\langle f(x), y \rangle = \langle x, f^{\dagger}(y) \rangle$$
 for all $x, y \in V$.

- (b) Suppose that α is an orthonormal ordered basis for V, and let $A = M_{\alpha}(f)$ be the matrix representing f with respect to α . Show that $A^{\dagger} = M_{\alpha}(f^{\dagger})$, where A^{\dagger} denotes the conjugate transpose of A.
- (c) Let \hat{A} be an $m \times n$ matrix over F. Show that $(Ax) \cdot y = x \cdot (A^{\dagger}y)$ for all $x \in F^n$ and $y \in F^m$.