MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 12

Throughout this assignment V denotes a vector space over $F=\mathbb{R}$ or \mathbb{C}.

Problem 1.

(a) Show that the function $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
f\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=x_{1} y_{1}+x_{3} y_{3}
$$

is not an inner product on \mathbb{R}^{3}.
(b) Suppose that \langle,$\rangle is an inner product on V$. Prove that

$$
\langle x, c y\rangle=\bar{c}\langle x, y\rangle \quad \text { for all } x, y \in V \text { and } c \in F,
$$

and

$$
\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle \quad \text { for all } x, y, z \in V \text {. }
$$

(c) Show that if $f: V \times V \rightarrow F$ is an inner product on V and $r \in \mathbb{R}_{>0}$, then the function $r \cdot f$ is also an inner product on V.
(d) Describe explicitly all inner products on \mathbb{R} and on \mathbb{C}.

Problem 2.

(a) Suppose V is an inner product space. Prove the parallelogram equality

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2} \quad \text { for all } u, v \in V .
$$

(In the case $V=\mathbb{R}^{2}$ this equality expresses the fact that the sum of the squares of the sides of a parallelogram equals the sum of the squares of the diagonals.)
(b) A norm on V is a function $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ satisfying the following properties:

- $\|x\|=0 \Longleftrightarrow x=0$;
- $\|c x\|=|c| \cdot\|x\|$ for all $c \in F$ and $x \in V$;
- $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.

Define a norm on \mathbb{R}^{n} by $\|x\|=\max _{i}\left|x_{i}\right|$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. Prove that this is indeed a norm, and that it does not come from an inner product; in other words, there does not exist an inner product \langle,$\rangle on \mathbb{R}^{n}$ such that $\|x\|^{2}=\langle x, x\rangle$ for all $x \in \mathbb{R}^{n}$.

Problem 3. Use the Cauchy-Schwarz inequality to prove that

$$
(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) \geq 16
$$

for all positive real numbers a, b, c, d.

