MATH 201 HOMEWORK ASSIGNMENT 20

Problem 1.

- (a) Show that every 2×2 symmetric matrix over \mathbb{R} is diagonalizable.
- (b) Show that the complex symmetric matrix $A = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ is not diagonalizable.

Problem 2. Consider the cycle graph C_4 :

- (a) Find the adjacency matrix A = A(G).
- (b) Compute A^4 and use it to determine the number of walks from v_1 to v_3 of length 4. List all of these walks (these will be ordered lists of 5 vertices).
- (c) What is the total number of *closed* walks of length 4?
- (d) Compute and factor the characteristic polynomial of A.
- (e) What are the algebraic multiplicities of each of the eigenvalues?
- (f) Diagonalize A using our algorithm: compute bases for the eigenspaces of each of the eigenvalues you just found, and use them to construct a matrix P such that $P^{-1}AP$ is a diagonal matrix with the eigenvalues along the diagonal.
- (g) Use part (f) to find a closed expression for A^{ℓ} for each $\ell \geq 1$.
- (h) Take the trace of A^{ℓ} to get a formula for the number of closed walks of length ℓ for each $\ell \geq 1$.

Problem 3. In this problem you will prove the following theorem which was stated in class.

Theorem. Let A be the adjacency matrix for a graph G with vertices v_1, \ldots, v_n , and let $\ell \in \mathbb{Z}_{\geq 0}$. Then the number of walks of length ℓ from v_i to v_j is $(A^{\ell})_{ij}$.

(a) Let $p(i, j, \ell)$ denote the number of walks of length ℓ in G from v_i to v_j . Prove that for all i, j = 1, ..., n and $\ell \ge 1$,

$$p(i, j, \ell) = \sum_{k=1}^{n} p(i, k, \ell - 1) p(k, j, 1).$$

(*Hint:* Part of the trick is to parse this formula appropriately.)

(b) Prove the theorem by induction on ℓ , using the result from part (a).