MATH 201 HOMEWORK ASSIGNMENT 20

Problem 1.

(a) Show that every 2×2 symmetric matrix over \mathbb{R} is diagonalizable.
(b) Show that the complex symmetric matrix $A=\left(\begin{array}{cc}1 & i \\ i & -1\end{array}\right)$ is not diagonalizable.

Problem 2. Consider the cycle graph C_{4} :

(a) Find the adjacency matrix $A=A(G)$.
(b) Compute A^{4} and use it to determine the number of walks from v_{1} to v_{3} of length 4 . List all of these walks (these will be ordered lists of 5 vertices).
(c) What is the total number of closed walks of length 4?
(d) Compute and factor the characteristic polynomial of A.
(e) What are the algebraic multiplicities of each of the eigenvalues?
(f) Diagonalize A using our algorithm: compute bases for the eigenspaces of each of the eigenvalues you just found, and use them to construct a matrix P such that $P^{-1} A P$ is a diagonal matrix with the eigenvalues along the diagonal.
(g) Use part (f) to find a closed expression for A^{ℓ} for each $\ell \geq 1$.
(h) Take the trace of A^{ℓ} to get a formula for the number of closed walks of length ℓ for each $\ell \geq 1$.

Problem 3. In this problem you will prove the following theorem which was stated in class.
Theorem. Let A be the adjacency matrix for a graph G with vertices v_{1}, \ldots, v_{n}, and let $\ell \in \mathbb{Z}_{\geq 0}$. Then the number of walks of length ℓ from v_{i} to v_{j} is $\left(A^{\ell}\right)_{i j}$.
(a) Let $p(i, j, \ell)$ denote the number of walks of length ℓ in G from v_{i} to v_{j}. Prove that for all $i, j=1, \ldots, n$ and $\ell \geq 1$,

$$
p(i, j, \ell)=\sum_{k=1}^{n} p(i, k, \ell-1) p(k, j, 1) .
$$

(Hint: Part of the trick is to parse this formula appropriately.)
(b) Prove the theorem by induction on ℓ, using the result from part (a).

