MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 10

Note: Finish Problem 1 first.
Problem 1. Find the solution to the system of differential equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=x_{1}
\end{aligned}
$$

with initial condition $\left(x_{1}(0), x_{2}(0)\right)=(1,0)$. Your solution should include the diagonalization of a matrix. You may find the following notation useful:

$$
\phi=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\phi}=\frac{1-\sqrt{5}}{2}
$$

with useful relations $\phi \bar{\phi}=-1, \phi^{2}=\phi+1$, and $\phi+\bar{\phi}=1$. (Warning: You will want to make sure you get the diagonalization perfect. This will take some time. Using the above notation as much as possible will help.)
Problem 2. Find a closed form for the number of walks of length ℓ from v_{1} to v_{1} (closed walks at v_{1}) in the graph

Problem 3. Consider a sequence of numbers p_{n} defined recursively by fixing constants a and b, next assigning initial values for p_{0} and p_{1}, and then for $n \geq 1$ letting

$$
p_{n+1}=a p_{n}+b p_{n-1} .
$$

For instance, letting $a=2, b=-1, p_{0}=0$, and $p_{1}=1$, we get

$$
\begin{aligned}
p_{0} & =0 \\
p_{1} & =1 \\
p_{n+1} & =2 p_{n}-p_{n-1} \quad \text { for } n \geq 1,
\end{aligned}
$$

which defines the sequence

$$
0,1,2,3,4,5,6, \ldots
$$

Given any sequence of this form, we get the following matrix equation:

$$
\binom{p_{n+1}}{p_{n}}=\left(\begin{array}{ll}
a & b \tag{1}\\
1 & 0
\end{array}\right)\binom{p_{n}}{p_{n-1}} .
$$

So we have

$$
\binom{p_{2}}{p_{1}}=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right)\binom{p_{1}}{p_{0}},
$$

which implies

$$
\left.\binom{p_{3}}{p_{2}}=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right)\binom{p_{2}}{p_{1}}=\left(\begin{array}{cc}
a & b \\
1 & 0
\end{array}\right) \underset{1}{[(}\left[\begin{array}{cc}
a & b \\
1 & 0
\end{array}\right)\binom{p_{1}}{p_{0}}\right]=\left(\begin{array}{cc}
a & b \\
1 & 0
\end{array}\right)^{2}\binom{p_{1}}{p_{0}},
$$

and so on. In general, we have

$$
\binom{p_{n+1}}{p_{n}}=\left(\begin{array}{cc}
a & b \tag{2}\\
1 & 0
\end{array}\right)^{n}\binom{p_{1}}{p_{0}} .
$$

Let

$$
A=\left(\begin{array}{ll}
a & b \\
1 & 0
\end{array}\right) .
$$

and suppose A is diagonalizable. Take P so that

$$
P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) .
$$

We have seen that it follows that $A^{n}=P D^{n} P^{-1}$, so that equation (2) becomes

$$
\binom{p_{n+1}}{p_{n}}=P D^{n} P^{-1}\binom{p_{1}}{p_{0}}=P\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right) P^{-1}\binom{p_{1}}{p_{0}} .
$$

Thus, we get a closed form expression for p_{n} in terms of powers of the eigenvalues of A (just take the second component of the product on the right-hand side of the above equation).

Let $a=b=1, p_{0}=0$, and $p_{1}=1$.
(a) Write out the first several values for the sequence $\left(p_{n}\right)$.
(b) Write the corresponding matrix equation, as above.
(c) Diagonalize the matrix A and compute the corresponding equation for p_{n} in terms of powers of the eigenvalues of A.

