MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 10

Note: Finish Problem 1 first.

Problem 1. Find the solution to the system of differential equations

$$\begin{aligned} x_1' &= x_1 + x_2 \\ x_2' &= x_1 \end{aligned}$$

with initial condition $(x_1(0), x_2(0)) = (1, 0)$. Your solution should include the diagonalization of a matrix. You may find the following notation useful:

$$\phi = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad \overline{\phi} = \frac{1 - \sqrt{5}}{2},$$

with useful relations $\phi \overline{\phi} = -1$, $\phi^2 = \phi + 1$, and $\phi + \overline{\phi} = 1$. (Warning: You will want to make sure you get the diagonalization perfect. This will take some time. Using the above notation as much as possible will help.)

Problem 2. Find a closed form for the number of walks of length ℓ from v_1 to v_1 (closed walks at v_1) in the graph

Problem 3. Consider a sequence of numbers p_n defined recursively by fixing constants a and b, next assigning initial values for p_0 and p_1 , and then for $n \ge 1$ letting

$$p_{n+1} = ap_n + bp_{n-1}.$$

-1, $p_0 = 0$, and $p_1 = 1$, we get
 $p_0 = 0$

$$p_1 = 1$$

 $p_{n+1} = 2p_n - p_{n-1}$ for $n \ge 1$,

which defines the sequence

For instance, letting a = 2, b =

 $0, 1, 2, 3, 4, 5, 6, \ldots$

Given any sequence of this form, we get the following matrix equation:

(1)
$$\begin{pmatrix} p_{n+1} \\ p_n \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_n \\ p_{n-1} \end{pmatrix}.$$

So we have

$$\left(\begin{array}{c} p_2\\ p_1 \end{array}\right) = \left(\begin{array}{c} a & b\\ 1 & 0 \end{array}\right) \left(\begin{array}{c} p_1\\ p_0 \end{array}\right),$$

which implies

$$\begin{pmatrix} p_3 \\ p_2 \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_2 \\ p_1 \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{bmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{bmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_1 \\ p_0 \end{bmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} p_1 \\ p_0 \end{pmatrix},$$

and so on. In general, we have

(2)
$$\begin{pmatrix} p_{n+1} \\ p_n \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} p_1 \\ p_0 \end{pmatrix}$$

Let

$$A = \left(\begin{array}{cc} a & b \\ 1 & 0 \end{array}\right).$$

and suppose A is diagonalizable. Take P so that

$$P^{-1}AP = D = \operatorname{diag}(\lambda_1, \lambda_2).$$

We have seen that it follows that $A^n = PD^nP^{-1}$, so that equation (2) becomes

$$\begin{pmatrix} p_{n+1} \\ p_n \end{pmatrix} = PD^nP^{-1}\begin{pmatrix} p_1 \\ p_0 \end{pmatrix} = P\begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix}P^{-1}\begin{pmatrix} p_1 \\ p_0 \end{pmatrix}$$

Thus, we get a closed form expression for p_n in terms of powers of the eigenvalues of A (just take the second component of the product on the right-hand side of the above equation).

Let a = b = 1, $p_0 = 0$, and $p_1 = 1$.

- (a) Write out the first several values for the sequence (p_n) .
- (b) Write the corresponding matrix equation, as above.
- (c) Diagonalize the matrix A and compute the corresponding equation for p_n in terms of powers of the eigenvalues of A.