MATH 201: LINEAR ALGEBRA HOMEWORK DUE TUESDAY WEEK 10

Let F be a field and V a finite-dimensional vector space over F.

Problem 1. Let $f \in \mathcal{L}(V)$. Suppose that $\alpha = \langle v_1, \ldots, v_n \rangle$ is a basis for V such that $M_{\alpha}(f)$ is the diagonal matrix diag (c_1, \ldots, c_n) . Prove the following.

(a) A basis for im(f) is $\{v_i : c_i \neq 0\}$, and $rank(f) = \#\{i : c_i \neq 0\}$.

(b) A basis for ker(f) is $\{v_i : c_i = 0\}$, and null(f) = $\#\{i : c_i = 0\}$.

(c) The determinant of f is $c_1 \cdots c_n$.

Problem 2. Let U_1, \ldots, U_k be subspaces of *V*. Suppose that $V = U_1 \oplus \cdots \oplus U_k$ and let B_i be a basis for U_i . Prove the following. (a) $B_i \cap B_j = \emptyset$ if $i \neq j$.

- (b) The set $B = B_1 \cup \cdots \cup B_k$ is a basis for V.
- (c) $\dim V = \dim U_1 + \cdots + \dim U_k$.

Problem 3. Let $A \in M_{n \times n}(F)$. Suppose that A is diagonalizable, and let $\langle v_1, \ldots, v_n \rangle$ be a basis of F^n consisting of eigenvectors of A. Let P be the matrix with columns v_1, \ldots, v_n . Prove that the matrix $P^{-1}AP$ is diagonal.

Problem 4. Let $A \in M_{3\times 3}(\mathbb{R})$ be the matrix shown below.

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

(a) Compute the characteristic polynomial of A and determine the eigenvalues of A.

(b) For each eigenvalue of *A*, determine the dimension of the associated eigenspace.

(c) Show that A is diagonalizable and find a matrix P such that $P^{-1}AP$ is diagonal.