MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 10

Problem 1. Let V denote the \mathbb{R}-vector space $\mathbb{R}[x]_{\leq 3}$ of polynomials in x with real coefficients and degree at most 3 . Define a linear operator

$$
\begin{aligned}
L: V & \longrightarrow V \\
\quad f & \longmapsto x f^{\prime}+f^{\prime}
\end{aligned}
$$

where f^{\prime} denotes the usual derivative of f.
(a) Write the matrix of L with respect to the basis $\left\{1, x, x^{2}, x^{3}\right\}$ of V.
(b) What are the eigenvalues of L ?
(c) Does V have a basis of eigenvectors of L ? If so, give such a basis (written as polynomials, not tuples of real numbers), and if not, explain why not.
Problem 2. Suppose that V is an F-vector space and $f \in \mathcal{L}(V)$. Suppose further that $p_{f}(x)$ splits completely over F with no multiple roots (i.e., its roots are distinct). Prove that f is diagonalizable.
Problem 3. For which a, b is the matrix

$$
\left(\begin{array}{ccc}
-1 & a & b \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

diagonalizable?
Problem 4. Let $A=\left(\begin{array}{cc}a & 0 \\ 3(a-b) & b\end{array}\right)$.
(a) Find an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
(b) Use your answer to (a) to produce a concise formula for A^{k}, k a positive integer.

