Lecture Notes from Math 201, Fall 2018

Kyle Ormsby

November 28, 2018

Contents

Week 1, Monday 3
Week 1, Wednesday 6
Week 1, Friday 9
Week 2, Wednesday 11
Week 2, Friday 14
Week 3, Monday 16
Week 3, Wednesday 18
Week 3, Friday 21
Week 4, Monday 24
Week 4, Wednesday 26
Week 4, Friday 28
Week 5, Monday 31
Week 5, Wednesday 33
Week 5, Friday 37
Week 6, Monday 39
Week 6, Wednesday 41
Week 6, Friday 43
Week 7, Monday 45
Week 7, Wednesday 48
Week 7, Friday 51
Week 8, Monday 53
Week 8, Wednesday 56
Week 8, Friday 59
Week 9, Monday 61
Week 9, Wednesday 64
Week 9, Friday 67
Week 10, Wednesday 70
Week 10, Friday 73
Week 11, Monday 76
Week 11, Wednesday 79
Week 11, Friday 81
Week 12, Monday 84
Week 12, Wednesday 88
Week 13, Monday 91
Week 13, Wednesday 95
Week 13, Friday 98

Linear algebra is pervasive in modern math/science/tach:

- quantum physics
- Google PagaRank
- machine learning (PCA, ate.)
- Marker process us

But its origins are elementary:
a.g. Find all (x, y) such that

$$
\begin{aligned}
& 3 x+2 y=5 \\
& 2 x-y=1
\end{aligned}
$$

Eliminate variables:

$$
\begin{aligned}
3 x+2 y & =5 \\
\begin{aligned}
4 x-2 y & =2 \\
7 x & =7
\end{aligned} \Rightarrow x=1 \text { and } 3 x+2 y & =5 \text { is } \\
3+2 y & =5 \\
\Rightarrow \quad 2 y & =2 \\
& \Rightarrow \quad y=1
\end{aligned}
$$

Unique solution: $x=y=1$.
Geometry:

2.g. $\begin{aligned}-9 x-3 y & =6 \\ 3 x+y & =-2\end{aligned} \quad$ Solutions: $\{(x, y) / y=-2-3 x\}$

The following operations do not change the solution set and ares called row operations:
(1) Multiply an equation by a nonzero scalor
(2) Swap two equations
(3) Add a multiple of one row to another

Think Pair Share Why ara these operations

- element of thu "base field' F (maybe \mathbb{R} or C or $2 / 5 \mathbb{R}$) invertible? Why doer this
imply solution sets are invariant
ins under row operations?
We will see that row operations are sufficient to solve our problems.

$$
\begin{array}{r}
x+2 y+z=0 \\
x+z=4 \\
x+y+2 z=1
\end{array} \leadsto \sim\left(\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
1 & 0 & 1 & 4 \\
1 & 1 & 2 & 1
\end{array}\right) \underset{\substack{\text { eliminate } \\
x \text { from last two }}}{\substack{r_{2} \rightarrow r_{2}-r_{1} \\
r_{2} \rightarrow r_{2}-r_{1} \\
0}}\left(\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & -2 & 0 & 4 \\
0 & 1
\end{array}\right)
$$

- augmented matrix eqins).
- column correspond
to coefficient of x, y, z,
and constant value
log.

$$
\begin{aligned}
& x+2 y+z=0 \\
& x+z=4 \\
& x+y+z=1
\end{aligned} \quad \text { i.. }\left(\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
1 & 0 & 1 & 4 \\
1 & 1 & 1 & 1
\end{array}\right) \leadsto\left(\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

No solutions as the final row says that $0=-1$!
e.g. $\left(\begin{array}{lll|l}1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 4 \\ 1 & 1 & 1 & 2\end{array}\right) \leadsto\left(\begin{array}{lll|l}1 & 0 & 1 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \begin{array}{r}x+z=4 \\ y=-2 \\ (0=0)\end{array}$

Solution set: $\{(x,-2,4-x) \mid x \in \mathbb{R}\}$, a line in \mathbb{R}^{3}

Today: - Compute reduced echelon form of an augmented matrix.

- Learn how to express an infinite number of solutions in parametric and reactor forms.
In a matrix, the leading term of a row is its first nonzero entry. A matrix ss in echelon form if each leading term is to the right of the leading term in the ross asoment (except for the leading firm in the first row) and any all O rows ares at the bottom:

$$
\left.(3)^{*}\right)
$$

A matrix is in reduced echelon form if it is in sebelon form and each leading term is a 1 and is the only nonzero entry in its column.
egg. $\left(\begin{array}{lll|l}1 & & & a \\ & 1 & & b \\ & & \\ & & 1 & c \\ c \\ & & & d\end{array}\right) \Rightarrow \begin{aligned} & x_{1}=a \\ & x_{2}=b \\ & x_{3}=c \\ & x_{4}=d\end{aligned} \quad\left(\begin{array}{llll|l}1 & 2 & & 3 & a \\ & & 1 & 4 & b \\ & & & & 1 \\ c \\ d\end{array}\right) \Rightarrow$? (PPS)
TBS 1 . When are there no solutions? In risenuabe echelon form:
-contradictory erin

- no contradiction, essay column hes a loading term
egg.

$$
\begin{aligned}
& 2 x_{3}+6 x_{4}=0 \\
& x_{1}+2 x_{2}+x_{3}+3 x_{4}=1 \\
& 2 x_{1}+4 x_{2}+3 x_{3}+9 x_{4}+x_{5}=5 \\
&\left(\begin{array}{llllll}
0 & 0 & 2 & 6 & 0 & 0 \\
1 & 2 & 1 & 3 & 0 & 1 \\
2 & 4 & 3 & 9 & 1 & 5
\end{array}\right) \xrightarrow{r_{4} \leftrightarrow x_{2}}\left(\begin{array}{lllll|l}
1 & 2 & 3 & 0 & 1 \\
0 & 0 & 2 & 6 & 0 & 0 \\
2 & 4 & 3 & 9 & 1 & 5
\end{array}\right) \xrightarrow{r_{3}+r_{3}-2 x_{4}}\left(\begin{array}{lllll|l}
1 & 2 & 1 & 3 & 0 & 1 \\
0 & 0 & 2 & 6 & 0 \\
0 & 0 & 1 & 3 & 1 & 3
\end{array}\right)
\end{aligned}
$$

$\xrightarrow[\substack{\text { and } \\ r_{2} \rightarrow \frac{1}{2} r_{2}}]{\longrightarrow}\left(\begin{array}{lllll}1 & 2 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 & 1\end{array}\right)$
x_{2}, x_{4} are thin free variates.

So the original system e is equivalent to

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
x_{3}+3 x_{4} & \Rightarrow x_{1}=1-2 x_{2} \\
& =0 \\
x_{5} & =3
\end{aligned} \Rightarrow x_{3}=-3 x_{4}, x_{5}=3
$$

Solution set: $\left\{\left(1-2 x_{2}, x_{2},-3 x_{4}, x_{4}, 3\right) \mid x_{2}, x_{4} \in \mathbb{R}\right\}$ a plane of solutions. This is a parametric description of the soling.
Vector form: $\left\{\left.\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 3\end{array}\right)+x_{2}\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}0 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right) \right\rvert\, x_{1}, x_{4} \in \mathbb{R}\right\}$
e.g. If a system has reduced echelon form $\left(\begin{array}{ccccccc|c}1 & 3 & 0 & 1 & 2 & 0 & 1 & 7 \\ 0 & 0 & 1 & 4 & -1 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & & 1 & 1 & & 0\end{array}\right)$ thin its solution set is $x_{2} x_{4} A_{5} \quad x_{7}$ free

$$
\left\{\left(7-3 x_{2}-x_{4}-2 x_{5}-x_{7} y^{x_{1}}-2-4 x_{4}+x_{5}-3 x_{7}, x_{4}, x_{3}, 3-x_{7}, x_{7}\right) \mid x_{2}, x_{4}, x_{7}, c_{7}{ }^{6}\right.
$$

(parametric form)

$$
\text { or }\left\{\left(\begin{array}{c}
7 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-1 \\
0 \\
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{7}\left(\begin{array}{c}
-1 \\
0 \\
-3 \\
0 \\
0 \\
-1 \\
1
\end{array}\right)\left|x_{2}, x_{4}, x_{5}, x_{7} \in R\right|\right\}
$$

(vector from).

Problem Find all parabolas $y=a x^{2}+b x+c$ passing through $(1,4) \&(3,6)$.
Sol'n To part through $(1,4)$ us and

$$
4=a+b+c .
$$

For $(3,6)$,

$$
\left.\begin{array}{c}
6=9 a+3 b+c . \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
9 & 4 \\
9 & 3 & 1 \\
6
\end{array}\right) \xrightarrow{r_{2} \rightarrow r_{2}-9 r_{1}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -6 & -8
\end{array}\right) \xrightarrow{-80}
\end{array}\right) \xrightarrow{r_{2} \rightarrow \frac{-1}{6} r_{2}}\left(\begin{array}{lll}
1 & 1 & 4 \\
0 & 1 & 4 \\
\hline
\end{array}\right) .
$$

$\xrightarrow{r_{1} \rightarrow r_{1}-r_{2}}\left(\begin{array}{ccc|c}1 & 0 & -1 / 3 & -1 \\ 0 & 1 & 4 / 3 & 5\end{array}\right)$ is redececed echelon form. Thus the parabolas in question have

$$
\begin{aligned}
(a, b, c) & \in\left\{\left.\left(-1+\frac{1}{3} c, 5-\frac{4}{3} c, c\right) \right\rvert\, c \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{c}
-1 \\
5 \\
0
\end{array}\right)+c\left(\begin{array}{c}
1 / 3 \\
-4 / 3 \\
1
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\}
\end{aligned}
$$

TPS check this.

Vector Spaces
Let F bu e a field, e.g. $\mathbb{R}, \mathbb{C}, Q, Z / 2 \mathbb{Z}$, etc. (not $\mathbb{T} \ldots$...). Defn A vector pace var F (or F-vector space) is a set V together with operations $+: V \times V \longrightarrow V$ (vector addition)

$$
\therefore F \times V \longrightarrow V \text { (scalar multiplication) }
$$

(Write $v+\omega$ for $+(v, \omega), \lambda v$ for (λ, v)).), These operations have this following propertius forall $x, y, z \in T, a, b \in F$:
(1) $x+y=y+x \quad$ (commutativity $7+$)
(2) $(x+y)+z=x+(y+z) \quad$ (associativity of +)
(3) $\exists o \in V$ sit. $0=\omega \quad \forall w \in V$
(4) $\exists-x \in V$ s. $. x+(-x)=0$
(5) For $1 \in F, 1 \cdot x=x$
(6) $(a b) x=a(b x)$ (associativity of scalar mull)
(7) $a(x+y)=a x+b y\}$ distributivity

Rok (2)-(4) make V a group w her + . (1) makers tho group Abelian. (5)-(8) say that F acts on V in a manner compatidia with + . All together, we get a linear structure on V.
e.g. $F^{n}=\underbrace{F \times \cdots \times F}_{n \text { factor }}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i}\right.$ er for $\left.i=1, \ldots, n\right\}$

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right):=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
& c\left(a_{1}, \ldots, a_{n}\right):=\left(c a_{1}, \ldots, c a_{n}\right)
\end{aligned}
$$

sub-eng. (a) $F=\mathbb{R}, n=2: \mathbb{R}^{2}$ is the Euclidean plane

(b) $F=\mathbb{Z} / 2 \pi, n=3$: vector space with 8 effs such as $(0,10),(0,1,1)$ with $(0,1,0)+(0,1,1)=(0,0,1)$.
(c) $n=1: F^{\prime}: F$
(d) $n=0: F^{0}=\{0\}$, the trivial victor space.

$$
\begin{aligned}
0+0 & =0 \\
a O & =0
\end{aligned}
$$

erg. \mathbb{C} is an \mathbb{R}-vector space:

$$
\begin{aligned}
& (a+b i)+(c+d i)=(a+c)+(b+d) i \\
& c(a+b i)=c a+c b i
\end{aligned}
$$

egg. \mathbb{R} is a \mathbb{Q}-vector space.
arg. $M_{m \times n}(F)=m \times x_{n}$ matrices with entries in F

$$
=\left\{\left.\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{i n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \right\rvert\, a_{i j} \in F \quad \forall i j\right\}
$$

$$
\begin{aligned}
(A+B)_{i j}= & A_{i j}+B_{i j} \\
& i_{i} \text { entry of } A
\end{aligned}
$$

ag. For S any set, let $F^{S}:=\{$ functions $f: S \rightarrow F$.

$$
\begin{aligned}
(f+g)(s) & =f(s)+g(s) \\
(c f)(s) & =c(f(s))
\end{aligned}
$$

If $S=\{1, \ldots, n\}, F^{S}$ is essentially the same as F^{n} :

$$
f:\{1, \ldots, n\} \rightarrow F \leftrightarrow \sim(f(1), \ldots, f(n)) \in F^{n}
$$

If $S=\mathbb{N}$, get sequances in F.
TPJ Put a times structure on the set of polynomials in a single variable.

Subspaces a Spanning Leks
Defa Let V he an F-ventor pace, and let $\varnothing \neq 5 \subseteq V$. A linear combination of vectors in 5 is a vector

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}
$$

for some $a_{1}, \ldots, a_{n} \in F, u_{1}, \ldots, u_{n} \in S$.
oj. $S=\{(3,2),(2,-1)\} \subseteq Q^{2}$. Is $(-1,4)$ a linear combo of veter in 5 ? only if $\exists a, b \in F$ set.
ie.

$$
\left.\begin{array}{ll}
& a(3,2)+b(2,-1)=(-1,4) \\
\text { ie. } \quad & (3 a, 2 a)+(2 b,-b)=(3 a+2 b, 2 a-b)=(-1,4) \\
\therefore \text {... } \quad & 3 a+2 b=-1 \\
2 a-b=4
\end{array}\right\} \text { system of limes equations! }
$$

Performing row ops,

$$
\begin{aligned}
&\left(\begin{array}{cc|c}
3 & 2 & -1 \\
2 & -1 & 4
\end{array}\right) \xrightarrow{r_{1} \rightarrow r_{1}-r_{2}}\left(\begin{array}{cc|c}
1 & 3 & -5 \\
2 & -1 & 4
\end{array}\right) \xrightarrow{r_{2} \rightarrow r_{2}-2 r_{1}}\left(\begin{array}{cc|c}
1 & 3 & -5 \\
0 & -7 & 14
\end{array}\right) \\
& \xrightarrow{r_{2} \rightarrow-\frac{1}{r_{2}} r_{2}}\left(\begin{array}{ll|l}
1 & 3 & -5 \\
0 & 1 & -2
\end{array}\right) \xrightarrow{r_{1} \rightarrow r_{1}-3 r_{2}}\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right) \\
& \text { so } a=1, b=-2 . \quad \text { Indeed, }, 1 \cdot(3,2)+(-2)(2,-1)=(-1,4)
\end{aligned}
$$

Defoe $V a_{n}$ Frvector space, $\varnothing \neq 5 \leq \mathrm{V}$. The span of 5 , denoted span (5), is the set of all linear comber of alts of 5 .
Convention: $\operatorname{span}(\varnothing)=\{0\}$.
egg. In $\mathbb{R}^{2}, \quad \operatorname{span}(\{(1,1)\})=\{(a, a) \mid a \in \mathbb{R}\}$
$\operatorname{In} \mathbb{R}^{3}, \quad \operatorname{span}(\{(1,0,0),(0,1,0)\}=\{a(1,0,0)+b(0,1,0) \mid a, b \in \mathbb{R}\}$

$$
=\{(a, b, 0) \mid a, b \in \mathbb{R}\}
$$

Defn A subset $W \subseteq V$ is a (linear or vector) subspace if W is a vector space itself with operations inherited from V.
Prop $W \subseteq V$ is a subspace iff
(1) $\partial \in W$
(2) W it closed under addition $(u, v \in W \Rightarrow u+v \in W)$

Math 201
$\subseteq \mathbb{R}^{2}$ is a subspace
 then $(a, 0)+(b, 0)=(a+b, 0) \in W$. If $\subset \in \mathbb{R},(a, 0) \subset W$, then $c(a, 0)=(c a, 0) \in W$.
egg. $\mathbb{R}^{\mathbb{R}}=\mathbb{R}$-vs. of $f_{\text {us }} \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& u=c(\mathbb{R}, \mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is continuous }\} \\
& \tilde{w}=c^{\prime}(\mathbb{R}, \mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is differentiable }\}
\end{aligned}
$$

V, W are subspaces of $\mathbb{R}^{\mathbb{R}}, W$ is a indspace of V.
品.

$$
W=\{(a, b) \mid a, b \in \mathbb{R}, \quad(a=0 \text { or } b=0)\}
$$

$=$ union of two axes
W is nit a subspace of $\mathbb{R}^{2}:(0,1)+(1,0)=(1,1) \notin W$.
egg. $\{0\}, V$ are subspaces of V.
Prop If $W_{1}, W_{2} \subseteq V$ ares subspaces, then so is $W_{1} \cap W_{2}$.
Pf Hove $O \in W_{1}$ and $O \in W_{2}$, so $O \in W_{1} \cap W_{2}$.
If $u, v \in W_{1} \cap W_{2}$ thin $u, v \in W_{i}$ for $i=1,2$. Hence $u+v \in W_{i}$
for $i=1,2$. Hence $u+v \in W_{1} \cap W_{2}$. Similarly, for each $\lambda \in F$, $u \in W_{1} \cap W_{2} \Rightarrow u \in W_{1}$ and $u \in W_{2}$
$\Rightarrow \lambda u \in W_{1}$ and $\lambda u \backsim W_{2}$
$\Rightarrow \lambda u \in \omega_{1} \cap \omega_{2}$.
Props If S is a subset of a mentor space V, then
(®) span (5) ia subspace of V,
(b) if $W \subseteq V$ is a subspace and $5 \subseteq W$, thin $s p e n(J) \subseteq W$,
(c) unary subspace of V is the span of some subset of V^{\prime}.

If (a) If $S=\varnothing, \operatorname{spen}(S)=\{0\}$ is a sutipace. Now suppoin $5 \neq \varnothing$. For $u \in S, \quad 0 u=0 \in \operatorname{span}^{\text {span }}(5)$. Now take x, y espar (5).

Then $x=a_{1} u_{1}+\cdots+a_{n} u_{n} \quad$ for some $a_{i}, b_{i} \in F, u_{i}, v_{i}$ eS.

$$
y=b_{2} v_{1}+\cdots \cdot b_{m} v_{m}
$$

Thus $x+y=a_{1} u_{1}+\cdots+a_{n} u_{n}+b_{1} v_{1}+\cdots+b_{m} v_{m} \quad$ is also a linear combo of eft, of 5, so $x+y$ span (5). Finally,

$$
c x=\left(c a_{1}\right) u_{1}+\cdots+\left(c a_{n}\right) u_{n} \in s p a_{n}(S) .
$$

(b) If $x \in \operatorname{span}(S)$ then $x=a_{1} u_{1}+\cdots+a_{n} u_{n}$ for $\operatorname{son} n a_{i} \in F, u_{i} \in S$. Since $\mathcal{f} \leq W, u_{i} \in W$ too. Since W is a subspace, it' closed under add'n + scalar malt, is $x \in W$. Herren spear $(5): W$.
$\Leftrightarrow \operatorname{span}(W) \pm W$.
Defn W e say $5 \leqslant V$ generates a subspace W if $\operatorname{sean}(5)=L$.
egg. $\{(1,0),(0,1)\}$ generates \mathbb{R}^{2}

- $\{(1,0),(0,1),(3,2)\}$ gemrates \mathbb{R}^{2}
. $\left.11, x, x^{2}, x^{3}, \ldots\right\}$ generates $F[x]$.
- Let $e_{1}=(1,0, \ldots, 0) \in F^{n}$

$$
\begin{aligned}
& e_{2}=(0,1,0, \ldots, 0) \in F^{n} \\
& \vdots \\
& e_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in F^{n} \\
& \vdots \\
& \quad i_{i} \text { th position } \\
& e_{n}=(0, \ldots, 0,1) \in F^{n} .
\end{aligned}
$$

Then $\left\{e_{1}, \ldots, e_{n}\right\}$ generates F^{n}.
vg. If T is a finite set, let $x_{t}: T \longrightarrow F \longmapsto\left\{\begin{array}{ll}1 & s=t \\ 0 & s \neq t\end{array}\right.$ for $t \in T$.
Thin $\left\{x_{t} \mid t \in T\right\}$ generates F^{T}. (Chuck!)
TPS What goes wrong if T is infinite?

Linear Independence
Defoe Aset $S \leqslant V$ is linearly dependent if \exists distinct $u_{1}, \ldots, u_{n} \in S$ and scalars $a_{1}, \ldots, a_{n} n_{n}+$ all O si. $a_{1} u_{1}+\ldots+a_{n} u_{n}=0$.
eng. If $0=5$, than S is linearly dependent: $1.0=0$
ag $S=\{(1,-1,0),(-1,0,2),(-5,3,4)\}$. scalar victor
S is linearly dep iff $\exists a_{1}, a_{2}, a_{3}$, not all 0 s.t.

$$
\begin{array}{r}
a_{1}(1,-1,0)+a_{2}(-1,0,2)+a_{1}(-5,3,4)=0=(0,0,0) \\
\left(\begin{array}{ccc|c}
1 & -1 & -5 & 0 \\
-1 & 0 & 3 & 0 \\
0 & 2 & 4 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & -3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Rightarrow \begin{array}{l}
a_{1}=3 a_{3} \\
a_{2}=-2 a_{3} \\
a_{3} \text { arbitrary }
\end{array}
\end{array}
$$

Taking $a_{3}=1$, we get a nontrivial sol'n $w / a_{1}=3, a_{2}=-2, a_{3}=1$.
Prop S is lin dap ff $\exists v \in S$ sit. v is a linear combo of vectors in $5-\{u\}$.
此 (\Rightarrow) Supquse $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$ owl $a_{i} \in F, u_{i} \in S$. WLOG, assume
$a_{1} \neq 0$. Then $u_{1}=-\frac{a_{2}}{a_{1}} u_{2}-\frac{a_{3}}{a_{1}} u_{3}-\cdots-\frac{a_{n}}{a_{1}} u_{n}$.
$\Leftrightarrow)$ Say $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$ with $u_{i} \in S-\{v\}$ and $v \in S$.
Then $a_{1} u_{1}+\cdots+a_{n} u_{n}-v=0$ so S is lin dep.
Defoe $S \subseteq V$ is linearly independent if it is not linearly dependent,
\therefore.... if $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$ for distinct $u_{i} \in S$, than $a_{1}=\cdots=a_{n}=0$.
eng. . ϕ is lin ind.
[u\} is lin ind $\forall O \neq u \in V$.

- $S=\{(1,-1,0),(-1,0,2),(0,1,1)\}$ is lin ind:

$$
\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 2 & , & 0
\end{array}\right) \longrightarrow\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The $S_{1} \subseteq S_{2} \subseteq V$. If S_{1} is $\lim t_{1}$, then S_{2} is lindep. If S_{2} is lin ind, then S_{1} is lin ind.
If Moral exercise,

Whet 2,
'Friday
Than If $5 \subseteq V$ is lin ind and $v \in V \cdot S$, than Suing is lin dep jiff $v \in \operatorname{spam}_{\text {an }}(S)$.
Pf (\Rightarrow) If SuIVF is lin dy them $\exists a, a_{i}$ iF not all O and distinct $u_{i} \in S$, distinct from v, sit.

$$
a_{v}+a_{1} u_{1}+\cdots+a_{n} u_{n}=0 .
$$

If $a=0$, we would have $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$, contradicting lin ind of $5 O$ Thus $a \neq 0$. Then

$$
v=-\frac{a_{1}}{a} u_{1}-\frac{a_{2}}{a} u_{2}-\cdots-\frac{a_{n}}{a} u_{n} \in \operatorname{span}(5)
$$

(\Leftrightarrow) If $v \in \operatorname{span}(S)$, then v is a line er combo of vectors in 5 .
Thus surv\} ~ i s ~ i n ~ d e p . ~
aug. In $F[x],\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is lin ind.
Then suppose 5 is lin ind. Then for re span (5), v can be exprosed as a linear combo of vectors in 5 in a unique way.
Pf Say $v=a_{1} u_{1}+\cdots+a_{n} u_{n}=b_{1} u_{1}+\cdots+b_{n} u_{n}$ with $a_{i}, b_{i} \in F, u_{i} \in S$. (By letting some $a_{i}, b_{i}=0$, we may assumes we have the same u_{i} on both sides.) Then

$$
0=v-v=\sum\left(a_{i}-b_{i}\right) u_{i} .
$$

By lin ind, $a_{i}-b_{i}=0 \quad \forall i$.
Note This result does not hold if 5 is lin dup. For example, let $S=\{(1,1),(2,2)\} \subseteq \mathbb{R}^{2}$. Thin $(3,3)=(1,1)+(2,2)$

$$
\begin{aligned}
& =2(1,1)+\frac{1}{2}(2,2) \\
& =3(1,1)+0(2,2) \text { etc. }
\end{aligned}
$$

V an $F-v s$. Recall $u_{1}, \ldots, u_{n} \in V$ linearly indeperchant whin

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}=0, a_{i} \in f \Rightarrow a_{1}, \cdots, a_{n}=0 .
$$

A subset $5 \leq v$ if each of it inter subsets is l in ind is lin ind
The $5 \leq v$ lin ind, $v \in \operatorname{span}(S)$. Then v can be expressed uniquely as a linear combo of alts if 5 .
Prop If $S_{1} \subseteq S_{2} \subseteq V$ and S_{2} is lin ind, then S_{1} is lin ind. Pf Suppose $\sum_{i=1}^{n} a_{i} u_{i}=0$ for some $u_{i} \in S_{1}, a_{i} \in F$. Since $S_{1} \subseteq S_{2}, u_{i} \in S_{2}$ as well. Lin ind of $s_{2} \Rightarrow a_{i}=0 \forall i$.
eng. $V=(\mathbb{Z} / 3 z)^{3}$, a $\mathbb{Z}(3 \mathbb{Z}$-rector spare.
Note that $|V|=3^{3}=27$.
Chuck that $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V \mid x_{1}+x_{2}+x_{3}=0\right\} \subseteq V$ is a subspace Thin $W=\left\{\left(-x_{2}-x_{3}, x_{2}, x_{3}\right) \mid x_{2}, x_{3} \in \mathbb{z}_{3} z\right\}$ has 9 elethents.
Find a for ind generating set:
Take $v_{1}=(2,1,0) \in W$ with $\operatorname{span}\left\{v_{1}\right\}=\{(0,0,0),(2,1,0),(1,2,0)\}$.
Them $v_{2}=(1,1,1) \in W$-spam $\left\{v_{1}\right\},\left\{v_{1}, v_{2}\right\}$ is lin ind.
Every element of 5 pan $\left\{v_{1}, v_{2}\right\}$ has a unique expression of fie form $a_{1} v_{1}+a_{2} v_{2}$ with $a_{1}, a_{2} \in \mathbb{Z}\left(3 z\right.$. Thus \mid span $\left\{v_{1}, v_{2}\right\} \mid=q$.
A so $\operatorname{span}\left\{v_{1}, v_{2}\right\} \varepsilon W$, and cardinalitius match, so they ard equal.
Bases
Defoe A subset $B \in V$ is a basis if it is lin ind and spans V. An ordered basis is a basis whose elements have been listed as a sequence, $\bar{B}=\left\{b_{1}, b_{2}, \ldots\right\}$.
(1) The bock does not distinguish b/w unordernd and ordered bases (it's basis ares always ordered) but we will!

Prop If B is a basis of V, then every element of V can be expressed uniquely as a linear combo of elements of B.
If W. hose already sun that for B lin ind, every elf of span B has a unisus such expression. Since spank $B=V$, wee are donal
Def Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis of $V_{\text {. Given } v \in V \text {. }}^{\text {, }}$, there ard unique $a_{1}, \ldots, a_{n} \in F_{\text {sit. }} v=a_{,}, v_{1}+\ldots+a_{n} v_{n}$.
The coordinates of v with respect to B ane the components of the unto $\left(a_{1}, \ldots, a_{n}\right) \in F^{n}$.
e.g.(1) $B=\left\{e_{1}, e_{2}, e_{3}\right\} \subseteq F^{3}$, where $e_{1}=(1,0,0), \quad e_{2}=(0,1,0), e_{3}=(0,0,1)$.

The coordinates of (x, y, z) wit B ard x, y, z.
(2) Set $e_{1}^{\prime}=e_{3}, e_{2}^{\prime}=e_{2}, e_{j}^{\prime}=e_{1}$ and $B^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$. Thun the words of (x, y, z) wit B^{\prime} ard z, y, x.
(3) $B^{\prime \prime}=\{(1,0,0),(1,1,0),(1,1,1)\}$ is ax orderul basis of F^{3}.

Since $(x, y, z)=(x-y)(1,0,0)+(y-z)(1,1,0)+z(1,1,1)$, (x, y, z) has (oords $x-y, y-z, z$ wat $B^{\prime \prime}$.
(4) $V=M_{2 \times 2}(F)$. Thin $B=\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ with

$$
M_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), M_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), M_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad M_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

is an ordered basis of V wot which the words of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ are a, b, c, d.
(5) $(7,-6)=2 \cdot(5,3)-3(1,4)$:

Dimension
Def. $V: s$ firitu dimensional if it has a basis with a finite number of elements.
ag. $F^{n}, M_{m \times n}(F)$ are fin dim'l

- $F[x], \mathbb{R}^{\mathbb{R}}$ ass infinite dim'l.

The If V is finite dimensional, then every bars of V contains the same number of ells.
Weill get to the prof....
Defer If V is fin dim'l, the dimension of V, denoted dim V or $\operatorname{dim} F V$, is the number of elements in any of its bases.
Exchange Lemma Suppose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, and suppose $w=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V$ with $a_{i} \in F, a_{l} \neq 0$. Let $B^{\prime}=\left(B \backslash\left\{v_{l}\right\}\right) \cup\{w\} \mid$ Thar B^{\prime} is also a basis of V.
If First show B^{\prime} is lin ind. Wog, $l=1$. Suppose
$b \omega+b_{2} v_{2}+\cdots+b_{n} v_{n}=0$. Substituting for ω,

$$
\begin{aligned}
0 & =b\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)+b_{2} v_{2}+\cdots+b_{n} v_{n} \\
& =b a_{1} v_{1}+\left(b a_{2}+b_{2}\right) v_{2}+\cdots+\left(b a_{n}+b_{n}\right) v_{n} .
\end{aligned}
$$

Since the v_{i} ares k_{n} ind, $b a_{1}=b a_{2}+b_{2}=\cdots=b a_{n}+b_{n}=0$.
Fine $a_{1} \neq 0$, get $b=0$, so $b_{2}=\cdots=b_{n}=0$ as well. Thus B^{\prime} in ind.
Now show B^{\prime} spans V. First note $V_{1}=\frac{1}{a_{1}} w-\frac{a_{2}}{a_{1}} v_{2}-\cdots-\frac{a_{n}}{a_{1}} v_{n}$.
Take vEN. Since B spas, $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$

$$
\begin{aligned}
& =c_{1}\left(\frac{1}{a_{1}} v-\frac{a_{2}}{a_{1}} v_{2}-\cdots-\frac{a_{n}}{a_{1}} v_{n}\right)+c_{2} v_{2}+\cdots+c_{n} v_{n} \\
& =\frac{c_{1}}{a_{1}} w+\left(c_{2}-\frac{c_{1} a_{2}}{a_{1}}\right) v_{2}+\cdots+\left(c_{n}-\frac{c_{1} a_{n}}{a_{1}}\right) v_{0}
\end{aligned}
$$

So B' spans V. \square
Thur In a finite-dimensional vector space, ency basis has the same
number of elements.

PF Let V be a fin dim vector space. Among bans for V, ut $B=\left\{u_{1}, \ldots, u_{n}\right\}$ be one of minimal size. Let $C=\left\{w_{1}, \omega_{2}, \ldots\right\}$ be any other bars. Know $|B| \leq|C|$, and want to show $|B|=|C|$. $L_{t} B_{0}=B$ and consider $\omega_{1} \in C$. By the sechange lemma, get a new bani B_{1} by swapping w_{1} with sorn u_{1}. Relabeling if necessary, may assume $l=1$ to $B_{1}=\left\{w_{1}, u_{2}, \ldots, u_{n}\right\}$.
Now consider $\omega_{2} \in C$. Have $w_{2}=a_{1} w_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n} \sin u B_{1}$ is a basis. Since w_{1}, w_{2} are lin ind, at least one of a_{2}, \ldots, a_{n} is nonzero. (Make sure you understand this stop!) whole, $a_{2} \neq 0$, so by exchange lemana, $b_{3}=\left\{w_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ is a basis. Continuing in thar way, enentrollyg gt $B_{n}=\left\{w_{1}, \ldots, w_{n}\right\}$ basks, $\subseteq C$. In fact, $B_{n}=C$: if $\omega_{n+1} \in C \backslash B_{n}$, then $\omega_{n+1}=\sum_{i=1}^{n} d_{i} w_{i}$ (b/e Ba basis) but that cont happen bic C is a basis. Thus $C=B_{n}$ has elements.
Cor let V be a findiue $v, 5 \leq V$ in ind. Them 5 can be completed to form a basis of V.
Pf If $V \neq \operatorname{span}(S)$, thur for any $v \in V_{\operatorname{span}(S)}$, Juivp os ha ind. continue until the set spans V. This tenninater since of we would get an infinite bars.
cor $V f_{i n} d m_{m} v_{5}, V=\operatorname{span}(S)$. Then $\exists T \leq S$ which is a bass. of Similar.
Cor A collection of a rectors in an n-dime unto space is lin ind \Leftrightarrow if spans V
If (\Rightarrow) Supper $5 \in V$ fin ind, 151 in. We can comphtar 5 to a basis B, bet if that involves adding any vectors of it, them $|B|>n \geqslant$. (\Leftrightarrow) If 5 spans $V, 15 l \mathrm{in}$, than we canshrink 5 to a basis B, bent if that involves removing any vectors, than $|B|<n$.

Moral Basis $=$ min'l spaning sit $^{\prime}$
$=$ max' L lin ind set
…g. (1) \mathbb{R}^{n} har basis $\left\{e_{2}, \ldots, e_{n}\right\}$
(2) $\{(1,0,0),(1,2,0),(1,2,3)\} \subseteq \mathbb{R}^{7}$ lin ind \Rightarrow basit.
(3) $\mathbb{R}[x]_{\leqslant 2}=$ coust lin, or rlalpolyt. Basis $\left\{1, x, x^{2}\right\}$.

Sim, $\left\{1,1+2 x, 1+2 x+3 x^{2}\right\}$ is a basis.

Condorcut's Paradax
Candidatus $A, B, C ; 29$ voters

$$
\left.\begin{array}{lll}
A>B>C: 5 & & \\
A>C>B: 4 \\
B>A>C: 2 \\
B>C>A: 8 \\
C>A>B: 8 & \Rightarrow & A>B:+5
\end{array}\right)(17-12)
$$

i.n. ${ }^{7} \AA^{A}$ a voting poradot or Conshorcet cycle.
With haed-to-huad voling, any 'outcome, car be achiened - the rote schudulur is a distator!

Goal Use lineor algebro to understand how/whim such cycles arise.

$$
V=\left\{\left.\begin{array}{ll}
c_{i}^{A} \\
c_{\Sigma^{a}} & a \\
c_{a} B
\end{array} \right\rvert\, a, b, c \in \mathbb{R}\right\}=\mathbb{R}^{3}
$$

An $A>B>C$ voter corresponds to $C^{-1} C_{\pi^{\prime}}^{A}$, etc.

Call a veetor in \mathbb{R}^{3} puraly cycl:c if it is of the form $(k, h, k), L \in \mathbb{R}$ lut $C=\{(k, k, k) \mid k \in \mathbb{R}\}=\left\{\left.\begin{array}{l}k k_{i}^{A} k \\ \underbrace{}_{k} \mid k \in \mathbb{R}\end{array} \right\rvert\,\right.$
Which veutorr heve no cyelie compseent? Those perpendiculer to $c: \quad(a, b, c) \perp(x, y, z) \Leftrightarrow a x+b y+c z=0$.
So $C^{\perp}=\left\{(a, b, c) \in \mathbb{R}^{3}(a k+b k+c k=0 \quad \forall k \in \mathbb{R}\}\right.$

$$
\begin{aligned}
& =\left\{(a, b, c) \in \mathbb{R}^{3} \mid a+b+c=0\right\} \\
& =\left\{b(-1,1,0) * c(-t, 0,1) \mid b_{2} c \in \mathbb{R}\right\} .
\end{aligned}
$$

Thes lad to the brdereses Be $\{(1,1,1),(-1,1,0),(-1,0,1)\}$ of \mathbb{k}^{3}.
First coord: yelic componunt
$2^{\text {nd }}, 3^{\text {rd }}$ coords: non-cyelic componunts.
e.g. $(1,1,-1)=a(1,1,1)+b(-1,1,0)+c(-1,0,1)$

$$
\Leftrightarrow \begin{aligned}
a-b-z & =1 \\
a+b & =1 \\
a+c & =-1
\end{aligned} \leadsto\left(\begin{array}{ccc|c}
1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1
\end{array}\right) \xrightarrow{\text { row op }}\left(\begin{array}{lll|l}
1 & 0 & 0 & 1 / 3 \\
0 & 1 & 0 & 2 / 3 \\
0 & 0 & 1 & -4 / 3
\end{array}\right)
$$

so $(1,1,-1)$ has coords $(1 / 3,2 / 3,-4 / 3)$ wort B.
In particuler, this "rational prufereme" (i,e, ordersd prefeienu) has a cyclic componant!.
$C>B>A$ has coords $\left(-\frac{1}{3},-\frac{2}{3}, \frac{4}{3}\right)$ cort B
Call sign of first word the spin of the rational proferemex
porspin
migespin.

$$
\begin{aligned}
& 1 / A+-1 \\
& C \rightarrow B \\
& C \rightarrow B>A \\
& C \rightarrow B
\end{aligned}
$$

$A>B>C$

(3) $\begin{array}{ll}C^{A} K_{1}^{1} \\ C_{-1} B \\ C>A>B\end{array}$

Summing row (1) contributions fromelection, get $c_{c^{-a} / c_{a}^{A}<a}^{a}$ with $a>0$ if moreon lift, $a<0$ if mors in right, $a=0$ if same lift/nighl. From rose (2), sim get $c_{c}^{b}{ }_{b}^{4} A^{-b}$, and from (3) $c_{c}^{c}{ }_{c}^{c} x^{c}{ }^{c}$.

Condorcet yale whin all 3 haw same sign.
All positive:

$$
\begin{aligned}
-a+b+c & >0 \\
a-b+c & >0 \\
a+b-c & >0
\end{aligned} \quad \Rightarrow \quad a, b, c>0
$$

Thur we haw proud the following:
The If there is a Condorcet cycle, then $a, b, c>0$ or $a, b, c<0$.
TBS Connors ?
Q Given N voters, what fraction of voting profiles result in Condorat cycles?

Rank of matrices
Def Let A be ax $m \times n$ matrix ore F. Then Bow space of is the sumprae of F^{n} spanned by the rows of A. The column space of A is the subspace of F^{m} pruned by the columns of A. The row rank if A is the dimension of its row space. The column rant $F^{F} A$ is the dimension of its column space.

Note Row operations $=$ linear combos of routs. So if $A \rightarrow B$ via row ops, then $\operatorname{Rowspace}(B) \subseteq$ Rouspace (A). Rect we can Reverse row ops to get $B \rightarrow A=$ the opposite inclusion hods as val. Thus:
Resume If A, B related by row ops, thun they have the some row space. In particular, the reduced echelon form of A has the ramp roo space as A.
TP5 Why are the nonzero rows of a rsdueed echelon matrix lin ind??
Prop Leet A be an $m=n$ matrix which reduces to E in reduced echelon form. Then the nonzero mows of E for a basis of the row space of A. $\xrightarrow{\text { e.g. }}=\left(\begin{array}{llll}1 & 2 & 0 & 4 \\ 3 & 3 & 1 & 0 \\ 7 & 8 & 2 & 4\end{array}\right) \longrightarrow\left(\begin{array}{cccc}1 & 0 & 2 / 3 & -4 \\ 0 & 1 & -1 / 3 & 4 \\ 0 & 0 & 0 & 0\end{array}\right)$ in reduced echelon form so $\{(1,8,2 / 3,-4),(0,1,-1 / 3,4)\}$, a basis of the row spouse of A. Lewes Row opp don't change the cslamin rank of A.
If Suppose A on an man matrix with relation

$$
c_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m a}
\end{array}\right)+\cdots+c_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)=0
$$

among its columns. This relin is equis to a solection $\left(c_{1}, \ldots, c_{n}\right)$ t the linear system $c_{1} a_{11}+\cdots+a_{n} a_{10}=0$

$$
\frac{c_{1} a_{m 1}+\cdots+c_{n} a_{m n}}{\vdots}=0
$$

Row ops don't change solus, to donn change reins among cOls. $Q \mid$

Wuh 4, Monday
Wa see that reins anong columns corsupiond ta rulas bl cots of reduced echelon farer of the matrix. The cols contain in a pivot form a basis, so the corr cols in A form a basis \& its column space!

Must take the corrseponding cols in A, not the cols in E.
2.g. In th previous example, the first 2 cols curs pivot cols of E, so $\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 8\end{array}\right)$ forme a bass of wl space of A.
Then The row rank of a matrix is equal to if column rank. If $L+E$ be the reduced selulon form of a matrix A.
The number of nonzero rows equals the number of pivot columns.
Defn The rank of a matrix A, denoted rank (A), is the dimension of its row or column space.
Than Suppose we hem a housgeneous system of linear eqnis

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{m n} x_{n}=0 \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{m}=0
\end{gathered}
$$

Let A be the corresponding matrix. Then the restore space of solutions has dimension $n-\operatorname{rank}(A)$. (b unique sols of $\operatorname{rank}(A)=n$.).
If To solve, we compute REF of A. The number of frow variables
$=$ non-pivot columns $=n-\operatorname{ranh}(A)$.
TPS What about a nonhomogeneous system?

Lineor- Transformations
Q How are vector spaci ruleted? A By linear tremsformations.
Dufn V, w Fovector spaces. A lineer fransformation from V th L 䀎 a function $f: V \rightarrow b$ s.t. $\forall v, v^{\prime} \in V, \lambda \in F$,

$$
f\left(v+v^{\prime}\right)=f(v)+f\left(v^{\prime}\right)+f(\lambda v)=\lambda f(v) .
$$

"f preserves addition" "f preserves scalor multa"
"f presemes limear structurs""
Nore $f: v \rightarrow \omega$ is a lin trans iff $f\left(v+\lambda v^{\prime}\right)=f(v)+\lambda f\left(v^{\prime}\right) \quad \forall v, v^{\prime}, \lambda$. Synonyms linear map, homomorphim

$$
\begin{aligned}
& \text { I.g } \quad f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& (x, y, z) \mapsto(2 x+3 y, x+y-3 z) \quad \text { is limear: } \\
& \begin{aligned}
f\left((x, y, z)+\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right) & =f\left(x+x^{\prime}, y^{+}+y^{\prime}, z+z^{\prime}\right) \\
& =\left(2\left(x+x^{\prime}\right)+3\left(y^{+}+y^{\prime}\right), x+x^{\prime}+y^{+}+y^{\prime}-3\left(z+z^{\prime}\right)\right) \\
& \left.=(2 x+3 y, x+y-3 z)+\left(2 x^{\prime}+3 y^{\prime}, x^{\prime}+y^{\prime}-3 z\right)\right) \\
& =f(x, y, z)+f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) .
\end{aligned} \\
& f(\lambda(x, y, z))=f(\lambda x, \lambda y, \lambda z)=\cdots=\lambda f(x, y, z) .
\end{aligned}
$$

TFIf $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ linear?
Piop If $f: v \rightarrow w$ is lineer, thin $f(0)=0 \quad\left(i, e . f\left(0_{v}\right)=O_{w}\right)$. If Since f is limeer, $f\left(O_{v}\right)=f\left(0 . O_{v}\right)=0 \cdot f\left(O_{v}\right)=O_{w}$.
Prop Lut V, W be Frventor spacts, $B \subseteq V$ a basis. For sach $b \in B$, take $\omega_{b} \in W$. Thin \exists ! linear traws $f: V \rightarrow W$ s. $f(B)=w_{b} \neq B \in B$.
Stogan Linear transformations arndetermined by thuir action on bafer.

If Given $v \in V$, hame unique expression $v=a, b,+\cdots+a_{k} b_{L}$ for some $a_{i} \in F_{,}^{*} b_{i} \in B$, Define $f(r)=a_{1} w_{b_{1}}+\cdots+a_{k} \omega_{b_{k}}$.

Well-definition follows from uniqueness of the expression for v. Linearity forces this def n since $f(b)=\omega_{b}$.
Terminology say f defined on B and extended linearly to V. (For v, ω Fives, let $L(v, W)=\operatorname{Hom}(v, \omega)=H_{\text {om m }}^{F}(v, \omega)$ be the out of linear transformations $V \rightarrow W$. This forms a vector space via the operatives $(f+g)(x)=f(v)+g(x),(f f)(g)=l(f(x))$.
ing. $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ linear with $h\left(e_{1}\right)=(-1,1), h\left(e_{2}\right)=(3,4)$.
Thun $h(a, b)=h\left(a e_{1}+b e_{2}\right)=a h\left(e_{1}\right)+b h\left(e_{2}\right)=(-a, a)+(3 b, 4 b)$

$$
=(3 b+a, \quad(3 b-a, 4 b+a)
$$

Irs What is a formula for $\pi_{i}\left(a_{1}, \ldots, a_{n}\right)$?
TPS Is metric transpose $M_{\text {Lax }}(F) \rightarrow M_{\text {ra }}(F)$ limen?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Kernel and Image
Lemmere Let $f: v \rightarrow W$ be a linear trans. For amy subspace $U \subseteq v, f(U)=\{f(u) \mid u \in U\}$ is a subspace of W.
If Since $D \in U$ and $f(0)=0, D \in f(U)$. Now for $f(u), f\left(u^{\prime}\right)$ ef(u), $f(u)+\lambda f\left(u^{\prime}\right)=f\left(u+\lambda u^{\prime}\right) \in f(u)$ sines U is clone under liner combos.

Difn the image (or range space) of $f: V \rightarrow W$ is

$$
\operatorname{im}(f)=R(f)=f(v)=\{f(v) \mid v \in v\} .
$$

The dime of $\operatorname{in}(f)$ is the rack of f.
${ }^{2} g \frac{d}{d x}: F[x]_{53} \rightarrow F[x] \quad$ has image $F[x]_{\leq 2}$ $a_{0}+a_{1} x+a_{1} x^{2}+a_{3} x^{3} \longmapsto a_{1}+2 a_{2} x+3 a_{3} x^{2}$
and ramble 2.
:g. $h: M_{2 \times 2}(F) \longrightarrow F[x]_{\leq 3}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto(a+b+2 d)+c x^{2}+c x^{3}
$$

Any rector in mm(h) has any const form, O linear cuff, and equal x^{2}, x^{3} conf. So $\operatorname{in}(h)=\left\{r+5 x^{2}+5 x^{3}(r, s \in F\}\right.$ and $\operatorname{rach}(h)=2$.
Recall, If $f: A \rightarrow B$ is a function and $S \subseteq B$, than the prisage of S under $f: f^{-1}(S):=\{a \in A \mid f(a) \in \delta\}$.

Lemma For any $f: V \rightarrow W$ linear and U\&W subspace, $f^{-1}(U)$ is a subspace of V.

Pf $D \in f^{-1}(u)$ bile $0 \in U$ and $f(0)=0$. If $v^{\prime} \in f^{-n}(u)$. than $f\left(v+v^{\prime}\right)=f(v)+f\left(v^{\prime}\right) \in U$ b/c $f(v), f\left(v^{\prime}\right) \in U$. Moreover, $f(\lambda v)=\lambda f(v) \in U \quad b / c f(v) \in U$. Then $v+v^{\prime}, \lambda v \in f^{1}(u)$ so $f^{-1}(u)$ is a subspace.
Defy The kurnel (or mull space) of a linear map $f: V \rightarrow L$ is the inverse image of $\{0\}$,

$$
\operatorname{ker}(f)=\mathcal{N}(f)=f^{-1}(\{0\})=\{v \in V \mid f(0)=0\}
$$

Note $\{0 \mid \subseteq W$ is a subspace so $\operatorname{ker}(f)$ io a subspace of V.
The diomenstone of $\mathrm{ker}(f)$ is the map's nullity.
$\operatorname{eg} . \operatorname{ker}\left(\frac{d}{d x}: F[x] \rightarrow F[x]\right)=\{$ constant pos/yraniats $\}$ so $\frac{d}{d x}$ has unity 1 .
*.g. For $h: M_{\text {ier }}(F) \rightarrow F[x]_{\leq 3}$ as before,

$$
\operatorname{ker}(h)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & \frac{-(a+b)}{2}
\end{array}\right) \right\rvert\, a, b \in F\right\} \quad=\text { h has nullity } 2 \text {. }
$$

ing. $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ proguction onto i the word has

$$
\operatorname{kor}\left(\pi_{i}\right)=\left\{\left(a_{1}, \ldots, a_{i 1}, 0, a_{i n}, \ldots, a_{n}\right) \mid a_{j} \in \mathbb{R}\right\}
$$

has nullity $n-1$.
Them If $f: V \rightarrow W$ linear, then ramp $(f)+$ nullity $(f)=\operatorname{dim} Y$.
eng. Chuck for pruwioes examples.
PI Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for her (f). Extend to a basis
 of $\operatorname{im}(f)$, and the the then follows.
suppers $0=c_{k+1} f\left(v_{k+2}\right)+\cdots+c_{n} f\left(v_{n}\right)$. Than $0=f\left(c_{k n} v_{k+1}+\right.$ $\left.\cdots+c_{n} v_{n}\right)$ oo $\operatorname{cin}_{n} v_{k n}+\cdots+c_{n} v_{n} \in \operatorname{ker}(f)$. Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a oasis

Real $f: V \rightarrow W$ linear

$$
\begin{aligned}
& \operatorname{krr}(f)=\{v \in V \mid f(v)=0\} \\
& \operatorname{im}(f)=\{f(v) \mid v \in V\} \\
& \operatorname{rank}(f)=\operatorname{dimine}(f) \\
& \operatorname{nulity}(f)=\operatorname{dim} \operatorname{hir}(f) \\
& \operatorname{rank}(f)+\text { nullity }(f)=\operatorname{dim} V \quad \text { (Ramk-nallity the) }
\end{aligned}
$$

Prog ${ }^{\text {Limier }} f: V \rightarrow W$ is infective of $\operatorname{ker}(f)=\{0$.
If Dy linearity, $f(0)=0$, so if f is injection, them $\operatorname{lur}(f)=\{0\}$. Now suppose $\operatorname{kr}(f)=\{0\}$ and that $f(u)=f(v)$.
Than $0=f(u)-f(v)=f(u-v) \Rightarrow u-v \in \operatorname{lur}(f)=\{0\}$

$$
\begin{aligned}
& \Rightarrow u-v=0 \\
& \Rightarrow u=v
\end{aligned}
$$

so f is ing.
Prop Let $5 \leq V, f: V \rightarrow$ W limes.
(1) If 5 is lin dep, then $f(S)=\{f(s) / s \in 5\} \subseteq w$ is lin dep.
(2) If f is infective and 5 is lin ind, then $f(S) \subseteq w$ it lin ind.

If Suppose $\sum a_{i} s_{1}=0$ for some $a_{i} \in F_{j} s_{i} \in S$. Since is linear, $0=f(0)=f\left(\Sigma a_{i} s_{i}\right)=\left[a_{i} f\left(G_{i}\right)\right.$ so f preserves olpendemens.
Now suppose $f i n j, 5$ lin ind. If $0=\sum a_{i} f\left(G_{i}\right)$ for came $a_{i} \in F$, $f\left(s_{i}\right) \in f(S)$, thin, by linearity of $f, 0=f\left(\sum a_{i} f\left(s_{i}\right)\right)$, \because, ., $\sum_{a i} s_{i} \in \operatorname{ker}(f)=\{0\}$. Thus $\sum_{a i s:}=0$ and since S is lin ind, each $a_{i}=0$. Thus $f(S)$ lin ind.
Defy A linear trans $f: V \rightarrow W$ is an inuorephism if \exists lin trans $g: W \rightarrow V$ sit. $g \circ f=i d w$ and $f \circ g=i d_{w}$. ($c_{a} / l g$ th inverse of f, write $g=f^{-1}$.) Verite $f: V \cong W$ or $V * W$.

Note whin a function $f: A \rightarrow B$ has an inverse, we know it is bijection, so every kieeow isomorphism is a bijection. In fact, if $f: v-i$ is a line er bijection, then its inverse function' is abs linear (check!), are so f is an isomotphion.
Takeaway: Isomorphism $=$ linear bij"n.
1.g.

$$
\begin{aligned}
M_{2 * 2}^{0}(F) & \longrightarrow F^{4} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \longrightarrow(a, b, c, d)
\end{aligned}
$$

So : $M_{m \times n}(F) \longrightarrow F^{m n}$ discussed previously.
Prop Linear $f: V \rightarrow W$ is c_{n} if. of $\operatorname{ber}(f)=\{0\}$ and $\operatorname{in}(f)=w$. Pf $\operatorname{ker}(f)=\{0\}$ of f is in, in $(f)=$ of f is sari j, so both conditions $\xrightarrow{\text { ctab-n roget equarivalent to } f} 6_{i j}$, ie. f an iso.
Them Let dim $V=n<\infty$. Than $V \pm F^{n}$.
Pf choose a basis b_{1}, \ldots, b_{n} of V and $l_{1} s_{1}, \ldots, e_{n}$ be the standard basis of F^{n}. Define $f: v \rightarrow F^{n}$ by $f\left(b_{i}\right)=e_{i}, l \leq i \leq n$, and extending linearly. Than fol ff $\left(\sum a_{i} b_{i}\right)=\sum a_{i} t_{1}=\left(a_{1}, \ldots, a_{n} \mid+F^{n}\right.$ - this is the map taking v to its coordouatos wort b_{1}, \ldots, b_{n} which :s clearly a bij'n.
cor let V, w be finite dimensional rector spaces. Than V ane k care isomorphic iff $\operatorname{dim} V=\operatorname{dim} W$.
Pf First suppoen $f: v \cong h$ and lat b_{1}, \ldots, b_{n} be a basis of V. Thin $f(b, 1) \ldots, f\left(b_{n}\right)$ are lin ind (by Prop) and they span w be f is surg. Than $f\left(b_{1}\right), \ldots, f\left(b_{n}\right)$ is a basis of W $\Rightarrow \operatorname{dim} W=n=\operatorname{dim} V$.
Now suppose dim $V=\operatorname{dim} W=n$. By the The, there are iso $V \xrightarrow[\geqq]{f} F^{+} \stackrel{g}{\underline{ٍ}} W$. Than $g^{-1} \circ f: V \rightarrow W C$ is an i\%. G
Now For $n=0,1,2, \ldots$ get only one isomorplosm class of n-dom vector space. choosing an iso $V \rightarrow F^{n}$.s equivalent to choosing a basis of V.

Geometry of Linear Transformations
Goal: Benild visual intuition for linear trams $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$, focusing on $m=n=2$.
Recall that $f: V \rightarrow W$ linear is specified by its action on a basis of V : suppose $b_{1}, \ldots b_{n}$ form a basis of v. For any $w_{1}, \ldots, \omega_{n} \in W, J!$ lin trans $f: V \rightarrow W$ st.

$$
\left.f\left(b_{i}\right)=\omega_{i} . \text { (Thun } f\left(\Sigma_{i} b_{i}\right)=\sum_{a i} f\left(b_{i}\right)=\sum_{a: \omega_{i}} .\right)
$$

In particular a liner trans $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ a specifind $b_{y} f\left(e_{1}\right)=f(1,0) \& f\left(e_{2}\right)=f(0,1)$.

Thus it is common to visualize liner trans $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by what thing do to the unit square $[0,1] \times[0,1] \in \mathbb{R}^{2}$. Horn are some special cases along with their affects on $[0,1]^{2}$ -
Scale $e_{1} \longmapsto a r_{1}$

$$
e_{2} \longmapsto e_{2}
$$

- $2_{1} \mathrm{H}_{2} \mathrm{R}_{1}$

$$
e_{n} \longmapsto a_{n}
$$

Math 201 Wuk5, wednesday 2
Shear $\cdot e_{1} \mapsto C_{1}$

$$
\cdot e_{2} \leftrightarrow a e_{1}+e_{2}
$$

Reflect $n_{1} \longmapsto e_{2} e_{2}$

- 2 $2 \longmapsto^{\longrightarrow}$

Rotate $\cdot e_{1} \longmapsto(\cos \theta, \sin \theta)$

$$
e_{2} \longmapsto(-\sin \theta, \cos \theta)
$$

Call this map R_{A}

Squash $\cdot r_{1} \longmapsto k_{1}$
$2 \longmapsto 0$

- O-map
\square

Fact Every linear trams $\mathbb{R}^{n n} \rightarrow \mathbb{R}^{n}$ is the composition of a possible squash followed by shears, scales. and reflections.
Note wa will prove the when studying matrix inversion.
TPS why is fog linear when f, g ard liner?
Q How can we represent $R \theta$ as such a comprition?

Math wo r Wok 5, Wednesday 3
Special case : $\theta=\pi$. Than $e_{1} \longmapsto-e_{1}, e_{n} \mapsto-e_{3}$ is cleanly the comportion of two scales.
Now suppose $\theta \neq k \pi, k \in \mathbb{Z}$.
Claim $R \theta=X_{\alpha} \cdot Y_{\beta} \cdot X_{\alpha}$ fo X_{α} on x-shmar by α $\left(L_{1} \mapsto e_{1}, h \mapsto \alpha_{1}+e_{2}\right)$
and U_{p} a $y=s h$ ar by $s\left(e_{1} \mapsto e_{1}+\beta e_{1}, e_{2} r \operatorname{en}\right)$ with $\alpha=\gamma=-\tan (\theta / 2), \beta=\sin \theta$.

Indeed,

$$
\begin{aligned}
x_{\alpha} y_{\beta} X_{\alpha}\left(e_{1}\right) & =X_{\alpha} Y_{\beta}\left(e_{1}\right) \\
& =X_{\alpha}\left(e_{1}+\beta e_{2}\right) \\
& =e_{1}+\beta \alpha e_{1}+\beta e_{2} \\
& =(1+\beta \alpha) e_{1}+\beta e_{2} \\
x_{\alpha} Y_{\beta} x_{\alpha}\left(e_{2}\right) & =X_{\alpha} Y_{\beta}\left(\alpha e_{1}+e_{2}\right) \\
& =X_{\alpha}\left(\alpha e_{1}+\alpha \beta e_{2}+e_{2}\right) \\
& =X_{\alpha}\left(\alpha e_{1}+(1+\alpha \beta) e_{2}\right) \\
& =\alpha e_{1}+(1+\alpha \beta)\left(\alpha e_{1}+e_{2}\right) \\
& =\left(2 \alpha+\alpha_{\beta} \beta\right) e_{1}+(1+\alpha \beta) e_{2}
\end{aligned}
$$

Now for $10+(\theta)$

$$
\begin{aligned}
1+\alpha \beta=\cos \theta & \Leftrightarrow 1+\alpha \sin \theta=\cos \theta \\
& \Leftrightarrow \alpha=\frac{\cos \theta-1}{\sin \theta}
\end{aligned}
$$

$\Leftrightarrow \alpha=-\tan (\theta / 2) \quad$ (by trigonometry)
Finally, $2 \alpha+\alpha^{2} \beta=\alpha(1+(1+\alpha))=-\alpha(1+\cos \theta)=$ (more try, $)$

Math 201. blek 5, Wudmostay 4
TPS Express reflection through $y=-x$ ar a compin of scale shuar + riflect transformations.

Matrices
Recall $M_{\text {men }}(F)=m \times n$ matrices A wientries $A_{i, j} \in F$

$$
\stackrel{2}{2} \quad A=\left(\begin{array}{ccc}
1 & 2 & 6 \\
70 & -1
\end{array}\right) \in M_{2 \times 3}(Q)
$$

has $A_{1,2}=\varphi$.
lientery in :-th row, fth colum
$M_{\text {men }}(F)$ is an F-us with entry-uise aden a scalar mut; it dimusion:s $m_{n} w /$ basis $\{E(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\}$

$$
C_{0 \text { in } i / w}
$$

Now define a product on matrices

$$
\begin{aligned}
& M_{\text {map }}(F) \times M_{p+n}(F) \longrightarrow M_{m \times n}(F) \\
& M_{p} \text { miff t }=\text { rows on right }
\end{aligned}
$$

$$
(A B)_{i j}=\sum_{k=1}^{p} A_{i k} \cdot B_{k j}
$$

steps through steps through i-th col of B
egg. $\quad\left(\begin{array}{lll}16 & 2 \\ 3 & 1 & 4\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 3 & -1 \\ 5 & 3\end{array}\right)=\left(\begin{array}{cc}11 & {[6} \\ 26 & 11\end{array}\right)$

$$
\begin{aligned}
(A B)_{12} & =\sum_{k=1}^{3} A_{1 k} B_{k 2} \\
& =1 \cdot 0+0 \cdot(-1)+2 \cdot 3=6
\end{aligned}
$$

This is the "dot product" of i the row w / j the column where $\left(a_{k}, \ldots, a_{p}\right) \cdot\left(b_{1}, \ldots, b_{p}\right)=\sum_{k=1}^{p} a_{k} b_{k}$.
Prop Let $A \in M_{m \times p}(F), B, D^{\prime} \in M_{p k_{n}}(F), C \in M_{n \times q}(F), \lambda \in F$. Thun
(a) $\lambda(A B)=(\lambda A) B=A(\lambda B)$ $D, D^{\prime} \in M_{r x_{m}}(F)$
(b) $A(B C)=(A B) C$
(c) $A\left(B+B^{\prime}\right)=(A B)+\left(A B^{\prime}\right)$
(d) $\left(D+D^{\prime}\right) A=D A+D^{\prime} A$

If 1 of (b)

$$
\begin{aligned}
(A(B C))_{i j} & =\sum_{k=1}^{p} A_{i k}(B C)_{k j} \\
& =\sum_{k=1}^{1} A_{i k}\left(\sum_{l=1}^{n} B_{k l} C_{l j}\right) \\
& =\sum_{k=1}^{p} \sum_{l=1}^{n} A_{i k}\left(B_{k l} C_{l j}\right) \\
& =\sum_{l=1}^{n} \sum_{k=1}^{\ell} A_{i L}\left(B_{k l} C_{l j}\right) \\
& =\sum_{l=1}^{n} \sum_{h=1}^{N}\left(A_{i k} B_{k l}\right) C_{l j} \\
& =\sum_{l=1}^{n}\left(\sum_{k=1}^{n} A_{i k} B_{l l}\right) C_{l j} \\
& =\sum_{l=1}^{n}(A B)_{i l} C_{l j} \\
& =((A B) C)_{i j}
\end{aligned}
$$

If 2 of (b) We will build a dietimnary (bijn) -infad. limariso

$$
M_{\min }(F) \longleftrightarrow \alpha\left(F^{n}, F^{m}\right)
$$

$A \longleftrightarrow(x \longmapsto A x) \quad$ (for x colventor of langth n)
Comporition is associative, so matrix mult is af well!

1) Matix mult'n is not commutation! (Enen when definied)TPS How does matrix rank intoract w/ scaler malt, add'n?

Identity matrives The nem identity matrix In has is on ding, 03 elsewhers. Whemevan dbfined, $A I=A, I B=B$.
Enverses $A \in M_{n \times n}(F), B \in M_{n \times m}(F)$. If $A B=I_{n}$, call A a left morre for $B B$ a right inwarse for A.

$$
\text { a.j. } \begin{aligned}
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) B=\left(\begin{array}{cc}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right) \Rightarrow A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
B A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

so A is a left-inuters for B but B is not a left-invess for A.
Than $A, B \in M_{n \times n}(F)$. TFAE: (1) $A B=I_{n}$, (2) $B A=I_{n}$.
In this case, say A, B inkertible, $A^{-1}=B, B^{-1}=A$.
TFAE: (1) A is invertitle, (4) $\operatorname{rarh}(A)=n$, (3) the redeued rehelon form of A is I_{n}.
Proof Folbus from an algorithm for compuefing inuarsas.
Calculating the innerss
An example first: Let $A=\left(\begin{array}{ccc}0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$. A right invers to A could satiffy $\left(\begin{array}{ccc}0 & 3 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)\left(\begin{array}{lll}a & b & c \\ d & 1 & f \\ g & h & i\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Thas ruduas to 3 problems:

$$
\begin{aligned}
& A\left(\begin{array}{l}
a \\
d \\
g
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad A\left(\begin{array}{l}
b \\
2 \\
h
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad A\left(\begin{array}{l}
c \\
f \\
i
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) . \\
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\left(\begin{array}{ccc|c}
0 & 3 & -1 & 1 \\
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
A & 0 \\
1 \\
0
\end{array}\right) & \left(\begin{array}{c|c}
A & 0 \\
0
\end{array}\right)
\end{array}
\end{aligned}
$$

Math 201 Wrek φ, Monday
Combins into ons "super" -augmanted matrix reduction:

$$
\begin{aligned}
& (A \mid I)=\left(\begin{array}{ccc|ccc}
0 & 3 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\circ}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 3 & -1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{r_{3} \rightarrow r_{3}-r_{1}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 3 & -1 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & -1 & 1
\end{array}\right) \xrightarrow[r_{3} \rightarrow-r_{3}]{r_{2} \rightarrow r_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & 3 & -1 & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow{r_{3} \rightarrow r_{3}-3 / 2}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & 0 & -4 & 1 & -3 & 3
\end{array}\right) \xrightarrow{r_{3} \rightarrow-r_{3} / 4}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -\frac{1}{4} & \frac{3}{4} & -\frac{3}{4}
\end{array}\right) \\
& \xrightarrow[r_{2} \rightarrow r_{2}-r_{3}]{\stackrel{r_{1} \rightarrow r_{1}-r_{3}}{ }\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 / 4 & 1 / 4 & 3 / 4 \\
0 & 1 & 0 & 1 / 4 & 1 / 4 & -1 / 4 \\
0 & 0 & 1 & -1 / 4 & 3 / 4 & -3 / 4
\end{array}\right)} \underbrace{}_{A^{-1}}
\end{aligned}
$$

Thir easily genurabious to $A \in M_{n x_{n}}(F)$.
Algorithm for compenting A^{-1} :
Parform row ops t $\left(A \mid I_{n}\right)$ to compute REF of A :

$$
\left(A \mid I_{n}\right) \longrightarrow(\mathbb{R F F}(A) \mid B) .
$$

Than if $\operatorname{REF}(A) \neq I_{n}$, then $\operatorname{cank}(A)<n$ ard A har no invarse. If $\operatorname{REF}(A)=I_{n}$, then $\operatorname{ramk}(A)=n$, and $B=$ right invarit of A.

Perturning the sama algarither on $\left(A^{\top} \mid I_{c}\right)$ compuetes lift innusse C. (Note $\operatorname{rank}\left(4^{\top}\right)=\operatorname{rark}(A)$.) Thin $A B=I+C A=I$ Sm

$$
C(A B)=C I=C \Rightarrow(C A) B=C \text {, hut }(C A)=I \text {, so } I B=C \text {, }
$$

i... $B=C$, as desired. Thes the alge rithem compestes the Zsichel invarsu $B=A^{-1}$.

Matrices \& Linear Traurformations

$$
\begin{aligned}
M_{m \times n}(F) & \longrightarrow \mathcal{L}\left(F^{n}, F^{m}\right) \\
A & \longrightarrow\left(x^{n} \longrightarrow A x\right) \quad \text { for } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
\end{aligned}
$$

Linearity of $f_{A}: f_{A}(u+\lambda v)=A(u+\lambda v)=A u+\lambda A v$

$$
=f_{A}^{2}(u)+\lambda f_{A}(v)
$$

2.g. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) \quad f_{A}: F^{3} \rightarrow F^{2}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longmapsto\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y+3 z}{4+5 y+6 z}
$$

Notes (1) Coeffs coma from Loriesponding cow
(2) $f_{A}\left(\ell_{j}\right)=j$ the columm of A.

Thos gores us an isisa on producing an invarse functoon

$$
\mathcal{L}\left(F^{n}, F^{m}\right) \longrightarrow M_{m \times n}(F)
$$

$f \longmapsto\left(f\left(e_{1}\right) \cdots f\left(e_{n}\right)\right)$ with $f\left(a_{j}\right)$ writton at a columpe
Facts (a) $M_{\text {maxn }}(F) \rightarrow \mathcal{L}\left(F^{n}, F^{m}\right)$ is lincer
(b) and a $b_{i j}$, hunce an izo morpliten

TPS What does it moin for $A \mapsto f_{A}$ to be linvar?
Q How can we eneode a lin trans $f: V \rightarrow W$ with a tiatrit (v.w fir dim)

Idea. Choosing a basis for V is rquir to prodewing an Domorptrisor $V \xrightarrow{2} F^{n}$. Do this for W as vett thin use ther abem sossignment.
Suppore $\alpha=\left\{v_{2}, \ldots, v_{n}\right\}$ is an orderded baris of V and $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$ has coords $\left(c_{1}, \ldots, c_{r}\right)$. Gut $\phi_{\alpha}: v \stackrel{N}{\longrightarrow} F^{n}$
(๓) Simitarly, if $p:\left\{w_{1, \ldots}, w_{m}\right\}$ basvis of W, get $\phi_{s}: W \stackrel{\left.c_{12}, c_{m}\right)}{\Longrightarrow} F^{m}$.

The mon mabrix A_{α}^{n} representing f wort thise bases is the ons maling $V \xrightarrow{f} W$ commenter.

We have $v_{j} \longmapsto f\left(v_{j}\right)$
ey \longrightarrow oth columin
so the j the columen of A_{∞}^{β} must be the p-coords of $f\left(v_{j}\right)$.
I.l. $A_{\alpha}^{\beta}=\left(a_{i j}\right)$ whire $f\left(v_{j}\right)=a_{1 j} \omega_{i}+\cdots+a_{m j} \omega_{m}$.
e.g.

$$
\begin{gathered}
f: \mathbb{R}[x]_{\leq 2} \longrightarrow \mathbb{R}[x]_{\leq 3} \\
p \longmapsto x p+p^{\prime} \\
\alpha=\left\{1, x, x^{2}\right\}, \beta=\left\{1, x, x^{2}, x^{3}\right\} \\
f(1)=x=0 \cdot 1+1 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
f(x)=x^{2}+1=1 \cdot 1+0 \cdot x+1 \cdot x^{2}+0 \cdot x^{3} \\
f\left(x^{2}\right)=x^{2}+2 x=0 \cdot 1+2 \cdot x+0 \cdot x^{2}+1 \cdot x^{3}
\end{gathered}
$$

Thas $A_{\alpha}^{\beta}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ rap's f wrt α, β.
TPS. What is ifm $\mathcal{I}(V, W)$ for $\operatorname{dim} V=n, \operatorname{tim} W=m$?

- How is this rulated to V^{*} ?

Math 207 Were 6, Friday
Recall $M_{m \times n}(F) \xrightarrow{\underline{@}} \mathcal{L}\left(F^{n}, F^{m}\right)$

$$
A_{f}:=\left(f\left(x_{1}\right) \cdots f\left(a_{n}\right)\right) \longleftrightarrow\left(f_{A}: x \rightarrow A x\right)
$$

Image For $f: F^{n} \longrightarrow F^{m}$, in $(f)=\left\{f(x) \mid x \in F^{n}\right\} \subseteq F^{m}$.

$$
=\operatorname{span}\left\{f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right\}
$$

Scend dqualty the $x=\left(x_{1}, \ldots, x_{n}\right)=x_{1} e_{1}+\cdots x_{n \text { n en }}$ $\longmapsto f(x): x_{1} f\left(l_{1}\right)+\cdots r x_{n} f\left(e_{n}\right) \in \operatorname{span}\left\{f\left(e_{1}\right), \ldots, f\left(u_{n}\right)\right\}$, goring $\operatorname{im}(f) \subseteq \operatorname{span}\{f(e), \ldots 2 f(l e n\}$. The of thur inclusion follows b / c each $f\left(\varepsilon_{j}\right) \in \operatorname{ina}|f| \& \operatorname{im}(f)$ is-a subspace.
Prop $\operatorname{im}(f)=$ column peace of A_{f}

$$
\operatorname{sank}(f)=\operatorname{rank}\left(A_{f}\right)
$$

e.g. $A=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -3 & 2\end{array}\right)$ than $\operatorname{im}\left(f_{A}\right)=\operatorname{span}\{(1,0,-3),(1,1,2)\}$

Indued, $f(x, y)=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -3 & 2\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}x r y \\ y \\ -3 x+2 y\end{array}\right)=x\left(\begin{array}{c}1 \\ 0 \\ -3\end{array}\right)+y\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
Composition
Than $A \in M_{\operatorname{mxp}}(F), B \in M_{p e_{n}}(F)$ with associated lin trans $f_{A}: F^{-p} \rightarrow F^{m}, f_{B}: F^{n} \rightarrow F^{p}$. Thun

$$
f_{A} \circ f_{B}=f_{A B} .
$$

Pf For $x \in F^{n},\left(f_{A} \circ f_{B}\right)(x)=f_{A}\left(f_{B}(x)\right)=A(B x)=(A B) x$

$$
=f_{A B}(x) \cdot \square
$$

Note Matrix multi n was invented so that this would happen.

Dual Vector Spaces
Defun(1) For V an F-wector space; $V^{*}:=\mathcal{L}(V, F)$ is the dossal space of V. Elements of V^{*} are called linear functionally.
(2) If V is finite dimensional with bask $\left\{v_{1}, \ldots, v_{n}\right\}$, define $v_{i}^{*} \in V^{*}$ for $i \in\{1, \ldots, n\}$ by its-action on $\left\{v_{1}, \ldots, v_{n}\right\}$:

$$
v_{i}^{*}\left(v_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Prop $\left[v_{1}^{*}, \ldots, v_{r}^{*}\right\}$ is a basis of V^{*}. In particular, if $\operatorname{dim} V<\infty$, then $\operatorname{dim} V=\operatorname{dim} V^{\infty}$.
Pf Since $\operatorname{dom} V<\infty, \operatorname{dim} V^{+}=\operatorname{dim} \mathcal{L}(V, F)=\operatorname{dim} M_{!x \operatorname{dim} V}(F)$
Since there ares $n v_{i}^{t^{\prime}} s$, it suffices fo show they are linearly independent. If $a_{1} v_{1}^{*}+\cdots+a_{n} v_{n}^{*}=0$, thun, applying this eqn to v_{j}, get $a_{j}=0$. This holds for all j, so the v_{i}^{*} are lin ind. \square
Defy $\left\{v_{1}^{*}, \ldots, v_{n}^{n}\right\}$ is the decal bows of $\left\{v_{1}, \ldots, v_{n}\right\}$.
Double Duals
Defer. Thu decal of V^{*}, namely V^{*+t}, is the double deaf of V.
The. There is a natural linear injution $V \rightarrow V^{4 t}$. If V is finite dimensional, then this linear transformation is an isomorphism.PF Let $v \in V$. Define the evaluation at r max

$$
\begin{aligned}
e v_{v}: v^{*} & \longrightarrow F \\
f & \longmapsto f(v) .
\end{aligned}
$$

Than evv$(f+\lambda g)=(f+\lambda g)(v)=f(v)+\lambda g(v)=\operatorname{ev}_{v}(f)+\lambda e v_{v}(g)$ so $e v_{v}$ is a linear transformation. $V^{*} \rightarrow F$, i.e., $e_{v} \in V^{k x}$. We thus get a natural map $\varphi: V \longrightarrow V V^{* * h}$ $v \longmapsto e V_{v}$ and φ is linear: $\operatorname{ev}_{v+\lambda w}(f)=f(v+\lambda w)=f(v)+\lambda f(w)=e v_{v}(f)+\lambda \omega_{w} ;$ for all $f \in V, v \in \omega \in V, \lambda \in F$. Thus

$$
\varphi(v+\lambda \omega)=e v_{v+\lambda \omega}=e v_{v}+\lambda e v_{w}=\varphi(v)+\lambda \varphi(\omega)
$$

For injutivity, we punt - this requires knowing that V has a basis (containing any specified nonzero v), but we have only proven thor for fin dime vector spaces.
Nevertheless, it's trow!
For fin dome V, given $v \neq O \in V$, Jbasio Bəv.
Define $f: V \longrightarrow F$. Thin $f \in V^{*}$ and $e_{v}(f)=f(v)=1$.
$\overrightarrow{B r r g \leftrightarrow 0} \nrightarrow 1 \quad$ Thus $\varphi(v)=e_{v} \neq 0 \Rightarrow \operatorname{ker} \varphi=\{0\}$
$\Rightarrow \varphi$ in j.
By rank-nullity, φ is an isomorphism since $\operatorname{dom} V=\operatorname{dim} V^{*}=\operatorname{dim} V^{*+}$.
Dual transformations and transpose matrices Given $\varphi: V \rightarrow W$ lima and $f \in W^{k}$, we have $f \circ \varphi \in V^{k}$.
Prop The assignment $\varphi^{*}: \omega^{k} \rightarrow V^{*}$ is linear.

$$
f \longmapsto f \circ \varphi
$$

Pf $\varphi^{*}(f+\lambda g)=(f+\lambda g) \circ \varphi=f \circ \varphi+\lambda(q \circ \varphi)=\varphi^{*} f+\lambda \varphi^{*} g$.
Diff ()$^{\top}: M_{m \times n}(F) \longrightarrow M_{n x m}(F)$ is the transpose.

$$
\left(a_{i j}\right) \longmapsto\left(a_{j i}\right)=\left(a_{i j}\right)^{\top}
$$

The Let $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}, \beta=\left\{w_{1}, \ldots, w_{m}\right\}$ be orclered bases of $v_{1} w_{,}$resp. Let $A_{\alpha}^{\beta}(\varphi)$ denote the matrix of φ wort α, β.

Let $\alpha^{*}=\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}, p^{*}=\left\{w_{i}^{*}, \ldots, u_{m}^{*}\right\}$ be the deal bass. Thun $A_{\beta^{k}}^{\alpha^{\alpha}}\left(\varphi^{\star}\right)=A_{\alpha}^{\beta}(\varphi)^{\top}$ for any lin trans $\varphi: V \rightarrow \omega$.
If An exerciite in (advanced!) bodkeeping:
Let $A_{\alpha}^{\beta}(\varphi)=\left(a_{i j}\right)$ so that $\varphi\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} \omega_{i}, 1 \leq j \leq n$.
Now $\varphi^{k}\left(\omega_{k}^{k}\right)\left(v_{j}\right)=\left(\omega_{k}^{k} \circ \varphi\right)\left(v_{j}\right)=\omega_{k}^{b}\left(\sum_{i=1}^{i=1}, a_{j} \omega_{j}\right)=a_{k j}$.
Also $\left(\sum_{i=1}^{n} a_{k_{i}} v_{i}^{*}\right)\left(v_{j}\right)=a_{k j}$ for all l_{j}. Thus $\varphi^{*}\left(\omega_{k}^{*}\right)$ and $\sum_{i=1}^{n} a_{L i} v_{i}^{*}$ agree on a banns $\Longrightarrow \varphi^{*}\left(\omega_{k}^{k}\right)=\sum_{i=1}^{n} a_{L i} v_{i}^{*}$.
This sags that the k-th column of $A_{p^{*}}^{\alpha^{*}}\left(\varphi^{*}\right)$ is equal to the k-th row of $A_{\alpha}^{\beta}(\varphi) \quad \forall k$, so

$$
A_{\beta^{\alpha}}^{\alpha^{\alpha}}\left(\varphi^{\alpha}\right)=A_{\alpha}^{\beta}(y)^{\top} \text {. } \square
$$

Recall $V^{*}=\mathcal{L}(V, F)$

$$
\begin{aligned}
\mathcal{L}(v, w) & \longrightarrow \mathcal{L}\left(w^{*}, v^{*}\right) \\
\varphi & \longrightarrow \varphi^{*}=f \circ \varphi
\end{aligned}
$$

Q How are her φ, in φ related to kor $\varphi^{2}, \operatorname{im} \varphi^{=}$?
Duff let $5 \leqslant V$ be ca serbect of V. The annihilator of 5 is the subset of V^{*} defined by $5^{\circ}=\left\{f \in V^{*} \mid f(s)=0 \quad b \leq \in S\right\}$.
e.g. $V=\mathbb{R}[x], S=\{p \in V \mid p(0)=0\}$. (so $5=$ multiples of x

For $\lambda \in R$, devin $f_{\lambda} \in V^{+}$by $f_{\lambda}(p)=\lambda p(0)$. $=$ cons term O pononoets

Claim $5^{\circ}=\left\{f_{\lambda} / \lambda \in \mathbb{R}\right\}$.
Irolend, if $p \in S$ than $f_{\lambda}(p)=\lambda p(0)=\lambda \cdot 0=0$ so $f_{\lambda} \in 5^{\circ}$.
Abs suppose $g \in 5^{\circ}$. Restricting g to \mathbb{R} (vieundar const polys gives a limer trans $g \not \mathbb{R}: \mathbb{R} \rightarrow \mathbb{R}$. Let $d=g(1)$. Thin $g \mid \mathbb{R}(r)=\lambda r \quad \forall r \in \mathbb{R}$. Sines $g \in 5^{\circ}, g\left(x^{i}\right)=0$ for $i>0$. This

$$
\text { if } \begin{aligned}
p=a_{n} x^{n}+\cdots+a_{0} \in V,+\operatorname{lin} g(p) & =a_{n} g\left(x^{n}\right)+\cdots+a_{a} g(x)+g\left(a_{0}\right) \\
& =\lambda a_{0}=\lambda p(0) .
\end{aligned}
$$

That $g=f_{\lambda}$.
Note $\left\{f_{\lambda} \mid \lambda \in \mathbb{R}\right\}$ is resubspece if V^{*}.
HL) $5^{\circ} \subseteq V$ is e sedbrpace v subset $5 \in V$.
Lemma Suppose V is fin dim. Let $5 \subseteq V$ be a subspace, and $i: 5 \rightarrow V$ bethe inclusion map $i(5)=5$. Then $\operatorname{in}\left(i^{*}\right)=5^{*}$. PF HWy
Prop. For V fin dim, $5 \leq V$ subspace,

$$
\operatorname{dim}(5)+\operatorname{dim}\left(5^{0}\right)=\operatorname{dim} V .
$$

Pf $\operatorname{rank}\left(i^{+}\right)+\operatorname{null}\left(i^{*}\right)=\operatorname{dim} V^{2}, \operatorname{ker}\left(i^{+}\right)=5^{\circ}, \operatorname{dim} V=\operatorname{dim} V^{*}$, so

$$
=\underbrace{\lim \left(5^{*}\right)}_{\operatorname{dim} \cdot 5}+\operatorname{dim}\left(5^{\circ}\right)=\operatorname{dim} V
$$

Then Suppose V, w fin dime, $\varphi \in \mathcal{L}(V, W)$. Then
(a) $\operatorname{ker}\left(\varphi^{*}\right)=\operatorname{im}(\varphi)^{0}$
(b) $\operatorname{mull}\left(\varphi^{\circ}\right)=\operatorname{mull}(\varphi)+\operatorname{dim} W-\operatorname{dim} V$.

If For (a), note that if $f \in W^{*}$, then

$$
\begin{aligned}
f \in \operatorname{Ler}\left(\varphi^{v}\right) & \Leftrightarrow f \circ \varphi=0 \\
& \Leftrightarrow f(\varphi(v))=0 \quad \forall v \in V \\
& \Leftrightarrow f(\omega)=0 \quad \forall \omega \in \sin (\varphi) \\
& \Leftrightarrow f \in \operatorname{in}(\varphi)^{\circ} .
\end{aligned}
$$

For (b), apply the prep to $J=\operatorname{ine}(\varphi) \subseteq W$ to obtain dim $\operatorname{im} \varphi+\operatorname{dom} \operatorname{im}(\varphi)^{\circ}=\operatorname{dim} W$.
 $\operatorname{mull} \varphi$ *
E. $\quad \operatorname{rank} \varphi+\operatorname{mull} \varphi^{*}=\operatorname{dom} W$.

By rank-nulity, rank $\varphi=\operatorname{dim} V-$ null φ. sa null $\varphi=\operatorname{mall} \varphi+\operatorname{dom} W-\operatorname{din} V . \quad \mathbb{C}$
Cor φ^{*} is ing $\Leftrightarrow \varphi$ is surjection.
\# btw a
Thin Snore V, w fin $\operatorname{dim}_{1}, \varphi \in \mathcal{L}(v, w)$. Then
(a) $\operatorname{rank} \varphi^{*}=\operatorname{rark} \varphi$
(b) $\operatorname{im}\left(\varphi^{*}\right)=\operatorname{ker}(\varphi)^{\circ}$

If For (a), apply ramk-mallity to $\varphi * \varphi^{*}$:

$$
\begin{aligned}
\operatorname{rank} \varphi^{2} & =\operatorname{dim} W^{+}-\operatorname{mull} \varphi^{2} \\
\operatorname{rank} \varphi & =\operatorname{dim} V-\operatorname{mull} \varphi \\
\Rightarrow \operatorname{rank} \varphi^{2}-\operatorname{ram} \varphi & =\operatorname{sull} \varphi+\operatorname{dim} W-\operatorname{dim} V-\operatorname{sull} \varphi^{*}=0
\end{aligned}
$$

For (b), morose $f \in V^{*}$ i in the image of φ^{*}, so that $f=\varphi^{*}(g)$ for some $g \in \omega^{*}$. To show $f \in \operatorname{Lur}(\varphi)^{\circ}$, must show $f(v)=0 \quad \forall v$ tet φ. For $v \in \operatorname{ler} \varphi, f(0)=g(\varphi(v))=g(0)=0 \quad \checkmark$ so $\operatorname{im} \varphi^{+} \leq \operatorname{ker}(\varphi)^{0}$.
Now chuck dimensions are equal, proving equality:
By the fop, null $\varphi+\operatorname{dim} \operatorname{ker}(\varphi)^{\circ}=\operatorname{dim} V$, so

$$
\begin{aligned}
\operatorname{dim} \operatorname{her}(\varphi)^{\circ} & =\operatorname{dim} V-\text { null } \varphi \\
& =\operatorname{rank}(\varphi) \\
& =\operatorname{rank} \varphi^{2} \\
& =\operatorname{damim} \varphi^{*} .
\end{aligned}
$$

Cor φ^{2} surg if φ is ing.
Pf HW 0

Deturminants
Defu The detarminant is a multilineer, alternating function of the rows of a squar mabrix, dut: $M_{n+n}(F) \rightarrow F$, nor malizend so that its value on the identity meatrix is 1 .
To \exp lain, for $A \in M_{n \times n}(F)$ with rows $r_{1}, \ldots, r_{n} \in F^{-1}$, write $\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)$ for $\operatorname{det} A$. Thin
(1) Muthlinear : The determinant is a lineor fre wet each row:

$$
\begin{aligned}
& \operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}+\lambda r_{i}^{\prime}, r_{i+1}, \ldots, r_{n}\right) \\
& \quad=\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)+\lambda \operatorname{det}\left(r_{1}, \ldots, r_{i-1}, r_{i}^{\prime}, r_{i m}, \ldots, r_{n}\right)
\end{aligned}
$$

(2) Alternating: Th determinant is O if two of the rowr are equefl: $\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)=0$ if $r_{i}=r_{j}$ fe some if j.
(3) Normaliael: $\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=1$.

Thm For rach $n \geqslant 0, \exists!\operatorname{det}: M_{n \times n}(F) \rightarrow F$.
For now, assumes dat suists ratisfyying (1) (3).
Prop, [det \& row ori] Let $A, B \in M_{\text {nan }}(F)$.
(1) If B is abtained from A by swayping two rows, $\operatorname{det} B=-\operatorname{dat} A$.
(2) If B by sealing a row by λ, $\operatorname{dat} B=\operatorname{dedet} A$.
(3) If B-" by addmy a λ scaler mult of ome rous to anotluer, then $\operatorname{det} B=\operatorname{det} A$
Pf (1) In the cen of rapping r_{1}, r_{2}, compute A in

$$
\begin{aligned}
0 & =\operatorname{det}\left(r_{1}+r_{2}, r_{1}+r_{2}, r_{3}, \ldots, r_{n}\right) \quad[a t t] \\
& \left.=\operatorname{det}\left(r_{1}, r_{1}+r_{2}, r_{3}, \ldots, r_{n}\right)+\operatorname{det}\left(r_{2}, r_{1}, r_{2}, r_{3}, \ldots, r_{n}\right) \quad \text { [mult }\right] \\
& =\operatorname{det}\left(r_{1}, r_{1}, r_{3}, \ldots, r_{n}\right)+\operatorname{det}\left(r_{1}, r_{2}, r_{3}, \ldots, r_{n}\right)+\operatorname{det}\left(r_{2}, r_{1}, r_{3}, \ldots, r_{n}\right) \cdot \operatorname{det}\left(r_{2}, r_{1}, r_{3}, \infty t\right. \\
& =0+\operatorname{det} A+\operatorname{det} B+0 \Rightarrow \operatorname{cet}=-\operatorname{det} A
\end{aligned}
$$

(2) Impleal by nuliniterity-
(3)

$$
\begin{aligned}
\operatorname{det}\left(r_{1}, \lambda r_{1}+r_{2}, r_{3}, \ldots, r_{n}\right) & =\operatorname{det}\left(r_{1}, r_{1},, r_{1}\right)+\operatorname{ddt}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& =\operatorname{det}\left(r_{1}, \ldots, r_{n}\right)
\end{aligned}
$$

2

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)= & \operatorname{det}((a, b),(c, d)) \\
= & \operatorname{det}\left(a e_{1}+b{r_{2}}_{1}, e_{1}+\operatorname{da_{2})}\right. \\
= & \operatorname{adet}\left(r_{1}, c e_{1}+\operatorname{dee_{2}}\right)+1 \operatorname{det}\left(e_{2}, c e_{1}+\operatorname{dee_{2}}\right) \\
= & a c \operatorname{det}\left(c_{1}, 2_{1}\right)+\operatorname{addet}\left(l_{1}, e_{2}\right)+b c \operatorname{cet}\left(e_{2}, r_{1}\right) \\
& +b d \operatorname{det}\left(b, r_{2}, e_{2}\right) \\
= & a d \operatorname{det} I_{2}-b c \operatorname{det} I_{2} \\
= & a d-b c .
\end{aligned}
$$

The prop turns Gacess-Joden reduction into an algorithm For computing deft!
egg.

$$
\left.\begin{array}{rl}
\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -2 \\
9 & 4 & 0 \\
2 & 2 & 4
\end{array}\right) & =\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & -14 & 18 \\
0 & -2 & 8
\end{array}\right) \\
& =-\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & -2 & 8 \\
0 & -14 & 18
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & -4 \\
0 & -14 & 18
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & -4 \\
0 & 0 & -38
\end{array}\right) \\
& =2(-38)\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right) \\
& =2(-38) \operatorname{det} \\
I_{3}
\end{array}\right]
$$

TBS [in groups of 4]
. What is $\operatorname{det}\left(\begin{array}{cccc}4 & 2 & -1 & 8 \\ 0 & 5 & 1 & 3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3\end{array}\right)$?
. What is $\operatorname{det}(\sqrt{0})$?

Prop trace:
(1) $\operatorname{det} A \neq 0$
(2) $\operatorname{rank}(A)=n$
(3) A invertible.

Recall elect: $M_{n \times n}(F) \rightarrow F$ is the unique multilinear, clturnatiog
Function of the rows of an $n \times n$ matrix, normalized so that de $\left(f_{n}\right)=1$
Know: swapping rows switches sign

- scaling a row scales deft
adding a scalar multiple of om row to another does nothing $\operatorname{det} A \neq 0 \Longleftrightarrow \operatorname{rack}(A)$ in $\Longleftrightarrow A$ is invertible
To do: $\operatorname{det} A^{+}: \operatorname{det} A \quad$ Today
$\operatorname{det} A B=\operatorname{det} A \operatorname{det} B-\operatorname{ltLeg} F$
- row/columar expansion - Friday
- permutitition expansion fut $A=\sum_{\sigma \in \Sigma_{n}} \operatorname{sgn}(\sigma) A_{(\sigma(4)} \cdots A_{n\left(L_{n}\right)}$-Wed
- Over R, $|\operatorname{det} A|=\operatorname{vol}\left(A \cdot[0,1]^{n}\right)$-next Monday
- Net exists and v unique - QR EQ Friday

Elementary Matrices An non matrix is called an elemsentery matrix if it is obtained from I_{n} through a single row operation.

Fact If E is an $n \times n$ elementary matrix and $A \in M_{n \times k}(F)$, than EA is the mate's obtained from At by per forming the row operation associated with E.
upshot You can perform row op via multi by elementary entries $E=\left(\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \leftrightarrow r_{2} \rightarrow r_{2}-3 r_{1}$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
- & 2 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 0 & -1 & 2 \\
1 & 5 & 1 & 7
\end{array}\right)=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -6 & -10 & -10 \\
1 & 5 & 1 & 2
\end{array}\right)
$$

Note $\operatorname{REF}(A)=E_{l} \cdots E_{2} E_{1} A$ for some elementary matriuly E_{i}.
Now look at $\operatorname{det} A^{\top}$ vs $\operatorname{det} A$.
ag. $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{\top}=\operatorname{det}\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=a d-b c$.
Them $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{ded} B$ Pf How 1
Prop
(1) $(A B)^{\top}=B^{\top} A^{\top}$
(2) $\left(A^{\top}\right)^{-t}=\left(A^{-1}\right)^{\top}$ for A invertible.

Pf (1) \swarrow
(2) The linear trans version syr $\left(f^{-1}\right)^{*}=\left(f^{*}\right)^{-1}$, which un now prove: For $f: V \rightarrow W$ toner iso with inverse n $f^{-1}: \omega \rightarrow V$ hare $f \circ f^{-1}=i d_{w} \Rightarrow\left(f \circ f^{-1}\right)^{*}=i \ell_{W^{*}}$

$$
\Rightarrow \quad\left(f^{-1}\right)^{*} \circ f^{n}=i d_{\omega^{*}}
$$

Similarly, $f^{*} \cdot\left(f^{-}\right)^{*}=i d v^{*}$, so $\left(f^{-1}\right)^{*}=\left(f^{*}\right)^{-1}$. \square
Lemma For E elementary, $\operatorname{det} E=\operatorname{det} E^{\top} \neq 0$.
Pf (1) For E given by swapping $i, j, E=E^{\top} \& \operatorname{det} E=-1=\operatorname{dat} E^{\top}$.
(2) For E scaling of row by λ to $E=E T \& \quad \lambda=\operatorname{dd} E=\operatorname{det} E^{\top} \neq O$.
(3) For E given by $r_{j} \rightarrow r_{j}+\lambda r_{i}, E^{\top}$ given by $r_{i} \rightarrow r_{i} r \lambda r_{j}$
so duet $\bar{E}=\operatorname{det} E^{T}=\operatorname{det} I_{A}=1$.
Them $\operatorname{det} A=\operatorname{ett} A^{\top}$
of There are elementary matrices E_{1}, \ldots, E_{l} st.

$$
\begin{aligned}
& \operatorname{REF}(A)=E_{l} \cdots E_{1} A \\
& \Rightarrow \operatorname{det} R F(A)=\operatorname{det} E_{l} \cdots \operatorname{det} E_{1} \operatorname{det} A \\
& \Rightarrow \operatorname{det} A=\operatorname{det}\left(E_{l}\right)^{-1} \cdots \operatorname{det}\left(E_{1}\right)^{-1} \operatorname{det} \operatorname{REF}(A)
\end{aligned}
$$

Taking $\oplus^{\top}: \quad \operatorname{REF}(A)^{\top}=A^{\top} E_{1}^{\top} \cdots E_{l}^{\top}$.
Taking det and soling for det A^{\top} (usind $\operatorname{deb} E_{i}=\operatorname{det} E_{1}^{\top}$):

$$
\begin{aligned}
\operatorname{det} A^{\top} & =\operatorname{det}\left(E_{1}\right)^{-1} \cdots \operatorname{det}\left(E_{\ell}\right)^{-\top} \operatorname{det} \operatorname{REF}(A)^{\top} \\
& =\operatorname{det}\left(E_{\ell}\right)^{-1} \cdots \operatorname{det}\left(E_{1}\right)^{-1} \operatorname{det} \operatorname{REF}(A)^{\top}
\end{aligned}
$$

Tho cosus: (i) $\operatorname{rank} A=n \Longleftrightarrow \operatorname{REF}(A)=I_{n} \Rightarrow \operatorname{det} \operatorname{REF}(A)=1$ ane $\operatorname{REF}(A)^{\top}=I_{n}^{\top}=I_{n}$ so det $\operatorname{REP}(A)^{\top}=1$ as weet. Thus

$$
\operatorname{det} A=\operatorname{det}\left(E_{l}\right)^{-1} \cdots \operatorname{det}\left(E_{1}\right)^{-1}=\operatorname{det} A^{\top} .
$$

(2) $\operatorname{rank} A<n \Rightarrow \operatorname{rank} A^{\top}=\operatorname{rank} A<n$

$$
\Rightarrow \operatorname{det} A=\operatorname{det} A^{\top}=0 .
$$

Cor det is a multilineer, alternating fuaction of the columens of a squenre matrix. \square

Permutation Expansion of the Determinant
Defy A permutation of a set x is a bijective $f_{n} x \rightarrow x$. The set of all permutations of X is called the symuntric group on X.
The symmetric group on $\pi=\{1, \ldots, n\}$ is the symmetric group on n letters, denoted $\Sigma_{n}\left(\sigma S_{n}\right.$, or $\left.\mathcal{E}_{n}\right)$.
Represent $\sigma \in \sum_{n}$ by the $2 \times n$ matrix

$$
\underbrace{\left(\begin{array}{cccc}
1 & 2 & 3 & \cdots
\end{array}\right.}_{\text {rearrangement of } 1, \ldots, n}
$$

Get $\left|\Sigma_{n}\right|=n$!
e.g. The 6 elements of Σ_{3} ard

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

Deft The permutation matrix corresponding to $\sigma \in E_{n}$ is the matrix

$$
P_{\sigma} \in M_{n \times n}(F)
$$

with i th column er (i).

$$
\stackrel{\log -}{\sigma=}\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \leadsto P_{\sigma}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Prop (a) The $r(i)-t h$ row of P_{σ} ir e_{i}.
(b) $P_{\sigma} P_{\sigma}^{\top}=I_{A} \quad$ (P_{σ} is orthogonal)
(c) $\left\{P_{\sigma} \mid r \in I_{n}\right\}$ is the set of matrices in $M_{n x_{n}}(F)$ with exactly om 1 in every row k when, O 's elsewhere.
(d) $P_{\sigma, \tau}=P_{\sigma} P_{\tau} \forall \sigma, \tau \in \Sigma_{n}$.

Pf (a) The cols of P_{σ} are $e_{\sigma(1)}, \ldots, e_{\sigma(x)}$. If $j=\sigma(i)$, th j th row of P_{σ} is $\left(e_{\sigma(1) j}, \ldots, e_{\sigma(i n j}, \ldots, e_{\sigma(n) j}\right)=e_{i}$.
(b) $\left(P_{\sigma}\right)_{a b}=e_{\sigma(b) a}=\delta_{\sigma(b), a}$. Thus

$$
\begin{aligned}
\left(P_{\sigma} P_{r}^{T}\right)_{i j} & =\sum_{k=1}^{n}\left(P_{\sigma}\right)_{i}\left(P_{\sigma}^{T}\right)_{k j}=\sum_{k=1}^{n}\left(P_{\sigma}\right)_{i k}\left(P_{r}\right)_{j k} \\
& =\sum_{k=1}^{n} \delta_{\sigma(k) i} \delta_{\sigma(k) j}= \begin{cases}0 & i \neq j \\
1 & i=j\end{cases} \\
\Rightarrow P_{r} P_{r}^{T} & =I_{n} .
\end{aligned}
$$

(c), (d): Moral exc.

Rib (1) If $A A^{\top}=I_{n}$ than $1=\operatorname{det} A \operatorname{det} A^{\top}=(\operatorname{det} A)^{2}$ 50 et $A= \pm 1$. Thus et $P_{r}= \pm 1 \quad \forall \sigma \in \sum_{n}$.
(2) Fun to think about permutation matrices as "roo-attocking robs" on an numen chessboard.
Defer A transposition in Σ_{λ} is a permutation which interchanges two -efts of \underline{n} and fixes all others. Write (ab) for the transposition swapping a, b.
Defer The sign of a permutation $\sigma \in \sum_{m}$ is $\operatorname{sgn}(\sigma)=\operatorname{det}\left(P_{\sigma}\right) \in\{ \pm 1\}$.
Prop Suppose σ is the composition of k permutations. Then $\operatorname{sgn}(\sigma)=(-1)^{k}$.
If If $k=1, P_{\sigma}$ obtained from a single row swap so aet $P_{\sigma}=-1$.
If $\sigma=\tau_{1} \cdots \cdots \tau_{k}$ for $k>1, \tau_{i}$ transtozations, thin
$\# P_{\Gamma}=P_{\tau_{1}} \cdots P_{\tau_{k}}$ and $\operatorname{det} P_{\sigma}=\operatorname{det} P_{\tau_{1}} \cdots \operatorname{det} P_{\tau_{L}}=(-1)^{k}$.
Rake In Math 332 youll prow that mary elf of Σ_{n} is a composition of transpositions.
Thu
For every $A \in M_{n \times n}(F)$.

$$
\operatorname{det} A=\sum_{\sigma \in \Sigma_{n}} \operatorname{sg}_{x}(\sigma) A_{\mid \sigma(1)} \cdots A_{n \sigma(n)}
$$

Pf The itch row of A is $A_{i_{1} e_{1}}+\cdots+A_{i_{n}}$ en so we see to compute $\operatorname{det}\left(A_{11} e_{1}+\cdots+A_{1 n}{ }^{2} n, \cdots, A_{n 1} 2_{1}+\cdots+A_{n n} 2_{n}\right)$. Using multilinearity to expand get nnterms, each of the form $A_{1 j}, A_{2,2} \ldots A_{n j n} \operatorname{det}\left(\varepsilon_{a_{j}}, \ldots, e_{\sigma_{j n}}\right) A$ If any (ago ${ }^{2} j_{i}=e_{j_{k}}$, get O, so only permutations $\sigma=\left(\begin{array}{cccc}1 & 2 & \cdots & { }_{n} \\ j_{1} & j_{2} & \cdots & j_{n}\end{array}\right)$ contribute. The matrix with row, i_{j}, \ldots, e_{j} is P_{σ}^{τ} with $\operatorname{det} P_{\sigma}^{\top}=\operatorname{det} P_{\sigma}=$ gun (σ). Thus the contribution of A is $A_{(\sigma(1)} \cdots A_{n \sigma(n)} \operatorname{sgn}(\sigma)$.
$\stackrel{g}{9}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
a & \left.\begin{array}{ll}
a_{41} & a_{11} \\
a_{13} \\
a_{21} & \sqrt[a]{a_{22}} \\
a_{31} & a_{33} \\
a_{32} & \boxed{a_{33}}
\end{array}\right) \quad a_{11} a_{22} a_{33}
\end{array}\right. \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
0 & \square & \\
0 & & a
\end{array}\right) \quad-a_{12} a_{21} a_{33} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
& 0 \\
a & a &
\end{array}\right) \quad-a_{13} a_{22} a_{31} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad\left(\begin{array}{lll}
a & & \\
& a & 0
\end{array}\right) \quad-a_{11} a_{23} a_{32} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
& a & \\
a & & 0
\end{array}\right) \quad a_{12} a_{23} a_{31} \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0
\end{array}\right)+\frac{a_{13} a_{21} a_{32}}{d t}
\end{aligned}
$$

So far hare seen that if tet: $M_{n \times \infty}(F) \rightarrow F$ multilin, alternating in rows with get $I_{n}=1$ exists, then

$$
\operatorname{det} A=\sum_{\sigma \in \Sigma_{n}} \operatorname{gu}(\sigma) A_{1 \sigma(i)} \cdots A_{n s(n)}
$$

so existence with imply uniqueness.
 matrix obtained by deleting the i-th row and j-th column from A.

Lemma Suppose that $n>1$ and that $D: M_{n-1 \times n-1}(F) \rightarrow F$ is multilin, alt with $D\left(I_{n \ldots}\right)=1$. Fix $j \in\{1, \ldots, n\}$ and define $d_{j}: M_{n, n}(F) \rightarrow F$ by $d_{j}(A)=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} D\left(A\left(\left.i\right|_{j}\right)\right)$. Than d_{j} is alt multi:in with $d_{j}\left(I_{\alpha}\right)=1$.
Pf Direct computation. I
Them For every $n \geqslant 1 \exists$! deft on $M_{n \times n}(F)$. Mornowees, this function satisfies $\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det} A A_{i}(j)$ for every $j \in\{1, \ldots, n\}$ and all $A \in M_{n \times n}{ }^{i=1}(F)$.
Pf Existence follows inductively from the lemma. Uniqueness follows from permutation expansion. Since the defurm:nant is unique, all the for of are equal. IS
Run. This is called of factor (or Laplace) expansion.
The (ii) cofactor of A ir $(-1)^{i+j} d e t A\left(\left.i\right|_{j}\right)=C_{i j}$.
We get $\operatorname{det} A=\sum_{i=1}^{n} A_{i j} C_{i j}=\sum_{j=1}^{\hat{j}} A_{i j} C_{i j}$.
e.g. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$

Expand abong ind rou:

$$
\begin{aligned}
\operatorname{det} A & =-2 \operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)+0 \cdot \operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \\
& =(-2)(-1)-(-1)=3
\end{aligned}
$$

Along 3 rd column:

$$
\begin{aligned}
\operatorname{det} A & =3 \operatorname{det}\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)-1 \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)+1 \cdot \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right) \\
& =3(2)-1(-1)+1(-4)=3 .
\end{aligned}
$$

Rmk If a metrie has many 0 's along a rou or col, expand along it for quick compin:

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 2 & 3 \\
1 & 4 & 0
\end{array}\right)=-3 \operatorname{dtt}\left(\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right)=-3 .
$$

Defun for $A \in M_{n \times n}(F)$ ut $c \in M_{n \times n}(F)$ heve $C_{i j}=(-1)^{i+j}$ a at $A(i \mid j)$ (the matrix of cofactors of A). The adjugate of A is

$$
\operatorname{adj}(A):=C^{\top}
$$

Tham $\operatorname{adj}(A) \cdot A=(\operatorname{det} A) I_{n}$.
Pf LLt $B=\operatorname{adj}(A) A$. Thun $B_{i i}=\sum_{k=1}^{\infty} \operatorname{adj}(A)_{i k} A_{k j}$
$=$ expansson of $\operatorname{det} A$ along

$$
\therefore \text { th col }
$$

$$
=d u t \cdot A
$$

Fur ifj, renains to show $B_{i j}=0$. Lut M be the matrix -ttoined by replacing the ithe colof A with $A ;$ jith end. shou det $M=B_{i j}$ कo $B_{i j}=0$. \square
Cor If A is invartible, $A^{-1}=(\operatorname{det} A)^{-1} \operatorname{adj}(A)$.

MATH 201: LINEAR ALGEBRA DETERMINANTS OVER \mathbb{R}

Let $v=\left(x_{1}, y_{1}\right), w=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ be linearly independent vectors. They span the parellelogram

$$
P(v, w)=\{a v+b w \mid 0 \leq a, b \leq 1\}
$$

Problem 1. Let M be the matrix with columns v, w so that $M=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$. Show that $M\left([0,1]^{2}\right)=$ $P(v, w)$ and draw a picture of $P(v, w)$. (Here $[0,1]^{2}=[0,1] \times[0,1]=\{(a, b) \mid 0 \leq a, b \leq 1\}$.)

$$
M\binom{a}{b}=a v+b_{w} \text { so } M\left([0,1]^{2}\right)=P(v, w) \text {. }
$$

If the vectors v, w are linearly dependent, it is reasonable to say that the degenerate parallelogram $P(v, w)$ has area 0 . This defines a function

$$
A: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

given by $A(v, w)=\operatorname{area}(P(v, w))$.
Problem 2. Let $k \in \mathbb{R}$. What is $A(k v, w)$? (Be careful with the case $k<0$.)
For $k \geq 0, \quad A(k v, w)=k A(v, w)$. In gemural,

$$
A(k v, w)=|k| A(v, w) .
$$

(Multiplying v by k scales the bass of the parallelogram by $|h|$.)
Problem 3. Let $k \in \mathbb{R}$. What is $A(v, w+k v)$? (A proof by picture might be appropriate.)
Rotates so that v is on the horizontal axis. Thun $P(v, w)$ and $P(v, u+k v)$ have the same base and height. Thus $A(v, w+k v)=A(v, w)$.

Problem 4. What is $A\left(e_{1}, e_{2}\right)$?

Problem 5. The function A nearly has the properties of a determinant function. Explain what proprties it does and does not have in this respect.
The function A is alternating and normalized, but not quite multilimers as scalars pall out as thur absolute value.

This inspires us to define the signed area of $P(v, w)$. For this definition, the order of v and w matters. If v and w are linearly independent, let θ be the angle from v to w, measured counterclockwise. Then $0<\theta<2 \pi$ and $\theta \neq \pi$. We can then define

$$
S A(v, w)= \begin{cases}A(v, w) & \text { if } 0<\theta<\pi \\ -A(v, w .) & \text { if } \pi<\theta<2 \pi \\ 0 & \text { if } v, w \text { linearly dependent. }\end{cases}
$$

Problem 6. Prove that $S A(v, w)=\operatorname{det} M$ where M has columns v, w.
SA is allernating, multilinor, and normalized ar a functor If th slums of a 202 matrix. By our dat M^{T} : dat M themes, the is equivalent to $\operatorname{sAc}(\vec{i})=\operatorname{det}(\dot{i}(\dot{i})$.

Problem 7. Consider the linear transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $\left(\begin{array}{cc}1 & 1 \\ -2 & 0\end{array}\right)$. Draw a picture of $f\left([0,1]^{2}\right)$. What is its area?

$$
\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-2 & 0
\end{array}\right)=0-(-2)=2=\operatorname{arca}\left(f\left([0,1]^{2}\right)\right)
$$vectors are linearly independent.

We define the volume of a parallelepiped determined by $\left(v_{1}, \ldots, v_{n}\right)$ as the absolute value of the determinant of the $n \times n$ matrix with columns v_{1}, \ldots, v_{n}.

Problem 8. Using the properties of the determinant and your intuition about how a volume should behave, argue why this definition makes sense. Check it against standard formulas for area and volume when $n=2$ and $n=3$.
Heres is the $n=2$ chuck: If $v=(k, 0), w=(x, y)$, thin $\operatorname{det}\left(\begin{array}{ll}k & x \\ 0 & y\end{array}\right)=k y-x \cdot 0=k y$. Geometrically, $P(x, w)$ is with ares $x y$. For the general case, consider
 the rotation $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ that takes v to the positive $x-a \times i=$. Rotations dost change area, and $\operatorname{det}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\cos ^{2} \theta+\sin ^{2} \theta=1$ so area is preserved.

Problem 9. For $n \times n$ real matrices A, B, interpret the rule $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ in terms of volumes.
Since absolute value commuter with products as well, wee see that the volume of $(A B)\left([0,1]^{n}\right)$ is the product of the volume of $A[0,1)^{n}$ and $B[0,1]^{n}$.

Let V be a fin dim rector space over a field F.
Duff A linear operator on V (or endomorphism of V) is a linear transformation $V \rightarrow V$.
Notation $\cdot \mathcal{L}(V):=\mathcal{L}(V, V)$.

- If $f \in \mathcal{L}(V)$ and α is an ordered baser of V_{1} $M_{\alpha}(f)=M_{\alpha}^{\alpha}(f)$ denotes the matrix of f wot α.
Goal Giving $f_{f} \mathcal{L}(V)$ find a boris α for V s.t. $M_{\alpha}(f)$ is uspleitally simple.
sugpoon, for instance, that $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$ is a bant for V r.f. $M_{\alpha}(f)=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$. Then (HW):
- A basin for $\operatorname{im}(f)$ is $\left\{v_{i}\left|c_{i} \neq 0\right|\right.$ and $\operatorname{rarb}(f)=\left|f_{i}\right| c_{i} \neq 0| |$
- A basis for $\operatorname{ker}(f)$ is $\left\{v_{i} \mid c_{i}=0\right\}$ and mull(f)$\left.=\left|\hat{f}_{i}\right| c_{i}=0\right\} \mid$. $\operatorname{det}(f)=c_{1} \cdots c_{n}$.
Weill address the following:
- Which linear operators on V can be ruprisented by a diagonal matrix?
- If not diagonal, what is the simplest type of matrix by which we cam rupnesant a given operator?
Defy A scalar $\lambda \in F$ is an rignvivalue of f if \exists nonzero $v \in V$ sit, $f(v)=\lambda v$. In that case, v is an eigenvector of f with sigenvalue λ.
e.g. $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \in \alpha\left(\mathbb{R}^{2}\right) \quad$ Then $f(2,3)=(4,6)=2 \cdot(2,3)$, $(x, y) \longmapsto(2 y-x, 6 y-6 x)$
so $v_{1}=(2,3)$ is an eigenvector of f with eigenvalue r 2 , similindy, $f(1,2)=(3,6): 3 \cdot(1,2)$, so $v_{2}=(1,2)$ is an nighenvector of f with ergennatue

3.

Math 201 Wuk 9, Wradusday 2
Cons:dur $\alpha=\left\{v_{1}, v_{2}\right\}$. Them $M_{\alpha}(f)=\operatorname{diag}(2,3)=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.
Prop Lut $f \in \mathcal{L}(V)$ and suppersi $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$ is a bars for V consirting of ligenventors of f. Then $M_{\alpha}(f)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ whirn λ_{i} = eigenvalume of $v_{i} f f f$.
If Follows from defor of $M_{\alpha}(f)$.
Defn A linder operatar $f \in \mathcal{L}(V)$ is diaquatizable if \exists bas.s of \checkmark consisting of rigenvectors of f.
e.g. $f \in z\left(\mathbb{R}^{2}\right)$ given by $f(x, y)=(-y, z)$. Clain f has nos eigenvector. If (a, b) is an eogenvector of $f w /$ eigenvalue d, than $(-b, a)=f(a ; b)=\lambda(a, b)$ so $-b=\lambda a, a=\lambda b$

$$
\Rightarrow \quad b\left(\lambda^{2}+1\right)=a\left(\lambda^{2}+1\right)=0 .
$$

Sinen $(a, b) \neq(0,0)$, get $\lambda^{2}+1=0$ \&or $\lambda \in \mathbb{R}$.
Defn Let $f \in \mathcal{L}(V)$. The characteristic polynomial of f is the polynomial $p_{f}(x) \in F[x]$ given by $p_{f}(x)=\operatorname{det}(A-x I)$ whend $A=M_{\alpha}(f)$ for any orceres bas $\sqrt{2} \alpha$ of V.
Prop supiou α, β ordersd bases of V, let $A=M_{\alpha}(f), B=M_{\beta}(f)$ Then $\operatorname{det}(A-x I)=\operatorname{det}(B-x I)$.
Pf \exists inuartible P s.t. $A=P^{-1} B P$. Thens $P^{-1}(B-x I) P=P^{-1} B P-P^{-1} \times I$ t $=A-x I$ so $b-x I, A-x I$ ard similir. Finally,

$$
\begin{aligned}
\operatorname{det}(A \cdot x I) & =\operatorname{det}\left(P^{-2}(B-x I) P\right) \\
& =\operatorname{det} P^{-1} \operatorname{det}(B-x I) \operatorname{det} P \\
& \left.=\operatorname{det}(B-x I) \quad \text { (bCe } \operatorname{det} P^{-1}=\frac{1}{\operatorname{det} P}\right) .
\end{aligned}
$$

1.g. For $f(x, y)=(-y, x), A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and

$$
P_{f}(x)=\operatorname{det}\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)\right)=\operatorname{det}\left(\begin{array}{cc}
-x & -1 \\
1 & -x
\end{array}\right)=x^{2}+1 .
$$

Lemma Let $\varphi \in z(V)$. Then φ is invarkitle of $\operatorname{ber} \varphi=\{0\}$.
PF Rank-mullity.
Prop lit $f \in L(V), \lambda \in F$. Then
λ :s an eigenvalue of $f \Leftrightarrow \lambda$ is a root of $p_{f}(x)$.
Pf Let $\varphi=f-\lambda I \in \mathcal{L}(v)$. Than λ is an eigenvalue of f iff $\operatorname{ker} \varphi \neq\{0\}$ iff φ not invertible iff $p_{f}(\lambda)=0$.
ag. Let $F=\mathbb{Z} / 1 \mathbb{Z}, f \in \mathcal{Z}\left(F^{2}\right)$ given by $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$.
Them $i_{f}(x)=\operatorname{det}(A-x I)=\operatorname{det}\left(\begin{array}{cc}2-x & 1 \\ 1 & 3-x\end{array}\right)=x^{2}-5 x+5=(x-6)(x-10$ so the eigenvalues of f are G and 10 .
\checkmark fin $d_{i m} w / F, f \in \mathcal{Z}(V)$. When is f diageralizable?
Def. For U_{1}, \ldots, U_{k} subspaces of V, say V is the direct sum of U_{2}, \ldots, U_{k} written $v=u_{1} \nexists \cdots U_{k}$ if $\forall v \in V, \exists!u_{i} \in U_{i} s t, v=u_{1}+\cdots+u_{k}$.
Prop Jupon $v=U_{1} \oplus \ldots U_{h}$ and let b_{i} be a basis for U_{i}. Thun
(a) $B_{i} \cap B_{j}=\varnothing$ for $i \neq j$,
(b) $B=B_{1} \cup \cdots \cup B_{h}$ is a basis for V,
(c) $\operatorname{dim} V=\operatorname{dim} U_{1}+\cdots+\operatorname{dim} U_{k}$.

Pf HL, 口
Lemma Let $\lambda_{1}, \ldots, \lambda_{k}$ be distinct eigenvalues of $f \in \mathcal{Z}(V)$, and suppose u_{i} is a λ_{i} eigenvector of f. Then u_{i}, \ldots, u_{k} are lin ind. PE by induction on k. If $k=1, u_{1} \neq 0=\left\{u_{1}\right\}$ lin ind. Assamble nos $k>1$ and the result hod for $k-1$. If $c_{1} u_{2}+\cdots+c_{k} u_{k}=0$
for $c_{i} \in F$, apply $f-\lambda I_{L}$ to both sidles:

$$
\begin{aligned}
0 & =\sum_{i=1}^{h}\left(c_{i} \lambda_{i} u_{i}-\lambda_{k} c_{i} u_{i}\right)=\sum_{i=1}^{k-1} c_{i} \lambda_{i} u_{i}-\lambda_{h} c_{i} u_{i} \\
& =\sum_{i=1}^{k-1}\left(c_{i} \lambda_{i}-\lambda_{k} c_{i}\right) u_{i} .
\end{aligned}
$$

By india hypothesis, $c_{i} \lambda_{i}-\lambda_{k} c_{i}=0$ for $i<k$.

$$
\Rightarrow c_{i}\left(\lambda_{i}-\lambda_{k}\right)=0
$$

Since $\lambda_{i} \neq \lambda_{h}$, get $c_{i}=0$ for $i<k$ so

$$
\begin{aligned}
0 & =c_{1} u_{1}+\cdots+c_{k} u_{k}=c_{k} u_{k} \\
\Rightarrow c_{k} & =0 \text { too. } \square
\end{aligned}
$$

Defer For $\lambda \in F$, the λ-ijgenspace of f is the serbspace

$$
\begin{aligned}
E_{\lambda}(f) & =\operatorname{ker}(f-\lambda I) \\
& =\{\lambda \text {-eigemuetors of } f\} \cup\{0\} .
\end{aligned}
$$

Lemma Let $\lambda_{1}, \ldots, \lambda_{k}$ be distriet ergenvalues of f. and let $u=E_{\lambda_{1}}(f)+\cdots+E_{\lambda_{k}}(f)$. Ther $u=E_{\lambda_{1}}(f) \oplus \cdots E_{\lambda_{L}}(f)$.
of Sufficy to rhow $u_{1}+\cdots+u_{h}=0, u_{i} \in E_{\lambda_{i}}(f) \Rightarrow u_{i}=0 b_{i}$. Let $\left\{u_{i}, \ldots, u_{i_{m}}\right\}$ be nonzuro u_{i} 's. Thin
$u_{i_{1}}+\cdots+u_{i}=0$ is a trivial lin comato of lin ind vactors 8.
Thm Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinat asgenvalurs of f, and let $d_{i}=\operatorname{dom} E_{\lambda_{i}}(f)$. TFAE:
(a) f is diagonalizable
(b) $V=E_{\lambda_{1}}(f) \oplus \cdots E_{\lambda_{k}}(f)$
(c) $\operatorname{dim} v=d_{1}+\cdots+d_{k}$.
ff Let $U_{i}=E_{\lambda_{i}}(f), u=u_{1} \oplus \cdots u_{k}$.
$(a) \Rightarrow(b)$: If f is diagenalizable than every elt of V is a limar combo of rigensactors of f. Since eniry eigennector is in U_{i} for some is get $V=C l$.
(b) $\Rightarrow(c)$:
$(c) \Rightarrow(a)$: For $i=1, \ldots, k$, let B_{i} be a beasis of U_{i}. Thun $B=B_{1} \cup \cdots \cup B_{k}$ is a basis of U with $d_{1}+\cdots+d_{k}$ elts
$=\operatorname{dim} V=\operatorname{dim} U$. As $U E V$, qet $U=V$. so B
is a bain's of V, and vary elt of B is an eugenvector of A. A How do we determine d_{1}, \ldots, d_{k} ? Chavsom a barsir of V gives $V \stackrel{\text { 鱼 }}{ } F^{n}, \mathcal{L}(V) \stackrel{\#}{\rightrightarrows} M_{n x a}(F)$

$$
f \longmapsto A
$$

and $\operatorname{kar}(f-\lambda I) \leftrightarrows \operatorname{Lr}(A-\lambda I)$. 5. d_{i} can be comperted by reducing $A-\lambda I$, counting non-prot columans
$f \in \mathcal{R}\left(\mathbb{R}^{2}\right), f(x, y)=(-x+2 y,-6 x+6 y)$

$$
\begin{gathered}
\text { I:,en } \\
A=\left(\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right) \\
P_{f}(x)=\operatorname{det}(A-x I)=\operatorname{det}\left(\begin{array}{ll}
-1-x & 2 \\
-6 & 6-x
\end{array}\right)=x^{2}-5 x+6=(x-2)(x-3)
\end{gathered}
$$

\Rightarrow rigenvaluer 2,3 .

$$
A-2 I \leadsto\left(\begin{array}{cc}
1 & -2 / 3 \\
0 & 0
\end{array}\right) \quad A-3 I \leadsto\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right)
$$

5. her $(A-2 I)$, $\operatorname{her}(A-3 I)$ arn both $1-$ dimn' C, spanned by $(2,3),(1,2)$, inap. Since $1+1=2=$ dim \mathbb{R}^{2}, f is diaquonalizable.

$$
M_{\langle(2,3),(1,2)\rangle}\left(f \left\lvert\,=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\right.\right.
$$

Recall the lin trans $\mathbb{R}^{2} \longrightarrow R^{2}$ given by $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ shock rotates the plane by $\pi / 2$. We have

$$
P_{A}(x)=\operatorname{det}(A-x I)=\operatorname{det}\left(\begin{array}{cc}
-x & -1 \\
1 & -x
\end{array}\right)=x^{2}+1
$$

which has no roots in \mathbb{R} and thus A has no eigenvalues. Now consider the lin trans $\mathbb{T}^{2} \rightarrow \mathbb{a}^{2}$ given by A. Orr $a, P_{A}(x)=(x+i)(x-i)$ and A has eigenvalues $\pm i$.
Pop If dim $V i_{n}$ and $f \in \mathcal{L}(V)$ has n distinct ejeanuelues, then f is diagoralizable.
Pf TPS (Lase eigenvectors of distinct eigenvalues are lin ind) \square Compute a basis for eigenspace of $;$:

$$
\begin{aligned}
& A-i I_{2}=\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right) \xrightarrow{r_{R} \leftrightarrow r_{2}}\left(\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right) \xrightarrow{r_{2} \rightarrow r_{2}+i r_{1}}\left(\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right) \\
& \Rightarrow \operatorname{ker}\left(A-i I_{2}\right)=\{(i y, y) \mid y \in \mathbb{C}\}=\operatorname{spas}\{(i, 1)\} . \\
& \text { Similarly, } \operatorname{ker}\left(A+i I_{2}\right)=\operatorname{spaa}\{(-i, 1)\} .
\end{aligned}
$$

Church $A\binom{i}{1}=i\binom{i}{1} \quad A\binom{-i}{1}=-i\binom{i}{1}$.

$$
\text { S }=\text { for } P=\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right), \quad P^{-1} A P=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \text {. }
$$

Defoe A polynomial $p \in F[x]$ splits our F if $\exists c, \lambda_{1}, \ldots, \lambda_{n} \in F$ rit. $p(x)=c\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$.
Note the λ_{i} ned not be distinct. The number of times a particular value λ occurs among the λ_{i} is called its algebraic moulfiplicitor. Fundamental The of Algebra Evary $p \in \mathbb{C}[x]$ splits over \mathbb{C}.

A matrix s in Jordan form if it is block diagonal with Jordan blocks for various λ along diagonal:

$$
\begin{aligned}
& \left(\begin{array}{llll}
J_{h_{1}}\left(\lambda_{1}\right) & & & \\
& J_{k_{2}}\left(\lambda_{2}\right. & & \\
& & \ddots & \\
& & & J_{k_{m}}\left(\lambda_{m}\right)
\end{array}\right) \\
& \text { ecg. } \cdot\left(\begin{array}{llllll}
2 & 1 & & & & \\
2 & 2 & & & & \\
\hline & 2 & 1 & & & \\
& & 2 & & & \\
& & 5 & & \\
& & & 4 & 1 & \\
& & & & 1 \\
& & & 4
\end{array}\right)=\left(\begin{array}{llll}
J_{2}(2) & & & \\
& & J_{2}(2) & \\
& & & J_{1}(5) \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right) \\
& =: J_{2}(2) \oplus J_{1}(2) \oplus J_{1}(5) \oplus J_{3}(4)
\end{aligned}
$$

Them Let dim $V<a$. Suppose $f \in \mathcal{L}(V)$ and $p_{f}(x)$ splits our F. Than \exists ord basie for V st. $M_{\alpha}(f)$ is in Jordan form. Th Jordan form is unique up to permutation of the Jordan blocks.
Pf Math 332 via structure the for fir gen module over a principal ideal domain.
TBS Determme $J_{k}(\lambda)^{m}$

- Use the Jordan form tho to show that every $f \in \mathcal{Z}(V)$ with Pf split/F hos a matrix rap which is the sam $D+N$ of a diagenad matrix D and nilpistert matrix N (so that $N^{r}=0$ for some $r \in \mathbb{N}$),

Walks on Graphs
For $D=\operatorname{ding}\left(\lambda_{1}, \ldots, \lambda_{n}\right), D^{l}=\operatorname{diag}\left(\lambda_{1}^{l}, \ldots, \lambda_{n}^{l}\right)$.
So if $A=P D P^{-1}$, then $(H \omega) \quad A^{l}=P D^{l} P^{-1}$ is easily computed.
A graph consists of writes enacted by edges:

A walk e of length l is a graph is a sequexer of vies $u_{0}, u_{2}, \ldots, \psi_{l}$ in the graph with u_{i-1} connecteytit u_{i} by an ld ge for $i=1 \ldots, i l$. o.g. $v_{1} v_{4}, v_{1} v_{2} v_{3} v_{4}$ are walks from v_{1} no v_{4} of length 1 and length s above.
Defy Let G be a graph with vas v_{1}, \ldots, v_{n}. The adjacency matrix of G is the $n \times m$ matrix $A=A(G)$ defined by $A_{i j}= \begin{cases}1 & \text { if there is an edge connecting } v_{i} \text { to } v_{j} \\ 0 & 2 / \omega\end{cases}$

- $A_{0}=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$ for the diamond graph

Than The number of walks from v_{i} to v_{j} is $\left(A^{d}\right)_{i_{j}}$.
Pf (tw).D of ling th 1
ag. For $A=A($ diamond graph $), ~ A^{2}=\left(\begin{array}{llll}2 & 1 & 2 & 1 \\ 1 & 3 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3\end{array}\right), A^{3}=\left(\begin{array}{llll}2 & 5 & 2 & 5 \\ 5 & 4 & 5 & 5 \\ 2 & 5 & 5 \\ 5 & 2 & 5 \\ 5 & 5 & 5 & 4\end{array}\right)$
So, e.g., 1 path of length 2 from v_{2} to $v_{3} v_{3}^{\prime}$
4 paths of length 3 from v_{2} to itself.
TB Verify

The If $A \in M_{m p n}(\mathbb{R})$ is symmetric $\left(A=A^{T}\right)$ ，then A ；diagendiath over 化。
Pf Math 202 via spectral the
Note $A(G)$ is symmetric！
Thins \exists diagonal D it．$P^{-1} A P=D$ for same P and $A^{2}=P D^{2} P^{-1}$ ．
It follows that the of walks of length l boo $v_{i}, v_{j} s$ a linear combination of fur l－th powers of the eigenvalues of A ：

$$
c_{1} \lambda_{1}^{\ell}+\cdots+c_{n} \lambda_{n}^{l}
$$

Defoe A walk is cloud if it begins and ends of the same va． Dion For $A \in M_{n \times n}(F)$ ，the trace of A is the rum of its diagonal entries， $\operatorname{tr}(A)=\sum_{i=1}^{N} A_{i i}$ ．
Prop For $A=A(G)$ ，the number of closed walks in G of length d is $\operatorname{tr}\left(A^{l}\right)$ ．
Pf The $\#$ of closed walks of length l from N_{i} to v_{i} is $\left(A^{d}\right)_{i i}$ ．
Cumming over $:=l, \ldots, n$ gases $\operatorname{tr}\left(A^{l}\right)$ ．\square
Prop for $A \in M_{\text {men }}(F)$ with $p_{A}(x)=c\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$ ．

$$
\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n}
$$

Note True even if the λ_{i} are in some larger field $K \supseteq F$ cane sch $=$ field always seats sh．P_{A} splits）．
位 Toke $P_{\text {rel．}} P^{-1} A P=J$ is in Jordan form．Thar eigenvalues of A ora on the diagonal of J ．each appearing $=$ \＆of times equal to its algebraic multiplicity．Fact $\operatorname{tr}(U V)=\operatorname{tr}(V U)$ ．
Thus $\operatorname{tr}(A)=\operatorname{tr}\left(P J P^{-1}\right)=\operatorname{tr}\left(J P P^{-1}\right)=\operatorname{tr}(J)=\lambda_{1}+\cdots+\lambda_{n}$ ．
Cor For $A=A(G) \in M_{m+n}(\mathbb{R}), \lambda_{i,}, \lambda_{n} \in \mathbb{R}$ the eigenvalyer of A （With multiplsity）．Thin the＊closed walks is G of length ℓ is $\dot{E} \lambda_{!}^{\ell}$ ．

Pf $\operatorname{tr}\left(A^{l}\right)=\sum$ ejeunvolues of $A^{l}=\lambda_{1}^{\ell}+\cdots+\lambda_{n}^{l}$.
2.g. For th diamond graph,

$$
\operatorname{det}\left(A-x I_{4}\right)=x^{4}-5 x^{2}-4 x=x(x+1)\left(x^{2}-x-4\right)
$$

so eigenvalues ara $0,-1, \frac{1 \pm \sqrt{17}}{2}$.
Thus the \#clond walks in G of length l :

$$
\begin{aligned}
& \omega(l)=(-1)^{l}+\left(\frac{1+\sqrt{14}}{2}\right)^{l}+\left(\frac{1-\sqrt{17}}{2}\right)^{l} \\
& l \quad 1 \\
& l \\
& l \\
& \omega
\end{aligned}
$$

Math zool Week 11, Monday
supper $x_{1}(t)=$ papen of frogs in a poundal
$x_{2}(t)=$ porn of flies in a pond
and suppose

$$
\begin{aligned}
& x_{1}^{\prime}(t)=a x_{1}(t)+b x_{2}(t) \\
& x_{2}^{\prime}(t)=c x_{1}(t)+d x_{2}(t)
\end{aligned}
$$

Let $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ and $x^{\prime}(t)=\binom{x_{1}^{\prime}(t)}{x_{2}^{\prime}(t)}$
Then $\Leftrightarrow(4 k) \quad x^{\prime}(t)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) x(t)$
Goal Find $x t x$) solving ($* *)$.
\#y. If $b=c=0$, gat $x_{1}^{\prime}(t)=a x_{1}(t)$

$$
x_{2}^{\prime}(t)=d x_{1}(t)
$$

so $x_{1}(t)=k_{1} e^{a t}, x_{2}(t)=k_{2} e^{i d t}, k_{1}=x_{1}(0), k_{1}=x_{2}(\theta)$. soy the system is decoupled since x_{1}, t_{2} don't depend in each other.
Conerakize by retting $x(t)=\left(\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{n}(t)\end{array}\right), \quad x^{\prime}=A x$ for spue $A \in M_{n \times n}(\mathbb{R})$. If A is diagonalizable over \mathbb{R}, thin decouple the system as follows: take P st.

$$
P^{-1} A T=D=\operatorname{diceg}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

The $x^{\prime}=A x$ becomes $x^{\prime}=P D P^{4} x$

$$
\Leftrightarrow P^{-1} x^{\prime}=D P^{-1} x
$$

set $y(t)=p^{-1} x(t)$. Thin $y^{\prime}(t)=p^{-1} x^{\prime}(t)$ and we git the system $y^{\prime}=D_{y}$, iss. $y_{1}^{\prime}=\lambda_{1} y_{1}$

$$
y_{n}^{\prime}=\lambda_{n} y_{n}
$$

Solutions $y_{i}(t)=k_{i} e^{\lambda_{i} t}$ for $k_{i}{ }^{2} y_{i}(0), i=1, \ldots, n$.
since $x=p_{y}$, this solus the original system with a linear combination of $k_{1} e^{\lambda_{1} t}, \ldots, k_{n} e^{\lambda_{n} t}$.
eng. $x_{1}^{\prime}=x_{2}$ in. $x^{\prime}=A x$ for $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

$$
x_{i}=x_{1}
$$

Than $P^{4} A P=D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ for $P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.
Thus $y_{1}=k_{1} e^{t}, y_{2}=k_{2} e^{-t}$ and $x=p_{y}$ is

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{k_{1} e^{t}+k_{2} e^{-t}}{k_{1} e^{t}-k_{2} e^{-t}}
$$

suppose the sole begins. at $(1,0)$. Then

$$
\begin{aligned}
& 1=x_{1}(0)=k_{1} 0^{0}+k_{2} 0^{0}=k_{1}+k_{2} \\
& 0=x_{2}(0)=k_{1}-k_{2}
\end{aligned}
$$

so $k_{1}=k_{2}=\frac{1}{2}$ and our sol is

$$
\begin{aligned}
& x_{1}(t)=\frac{t}{2}\left(e^{t}+e^{-t}\right) \\
& x_{2}(t)=\frac{2}{2}\left(e^{t}-e^{-t}\right)
\end{aligned}
$$

White May thou of x ' $=A x$ spuifying "velocity" x " at each $x \in \mathbb{R}^{n}$. A solemn is thin $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}$, if. $\gamma^{\prime}=A \gamma$ in. a "flow" through the velocity field.
Alternate solution
Recall $e^{t}=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k}$ connurgys $\forall t \in \mathbb{C}$. Given $A \in M$.-vcr (E) define $e^{A t}=\sum_{k=0}^{\infty} \frac{1}{h!} A^{k} t^{k}=I_{n}+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{6} A^{A^{3}} t^{3}+\ldots$ In each entry we get a power series in t that (Thu) womperge. for all t.

Pro For $A \in M_{n i n}(\mathbb{N})$, the solon $A x^{\prime}=A x$ with initial condotoon $x(0)=p$ is $x=e^{A t} p$.
Sketch $\left(e^{A t}\right)^{\prime}=A_{e}^{A t} \Rightarrow\left(e^{A t} p\right)^{\prime}=A\left(e^{A t} p\right)$.
computing $e^{A t}$: If $P^{-1} A P=D=\operatorname{diog}\left(\lambda, \ldots, \lambda_{n}\right)$, then

$$
\begin{aligned}
A^{k} & =P \text { diag }\left(\lambda_{1}^{k}, \ldots,\left.\lambda_{n}^{k}\right|_{\infty} ^{\infty} P^{-1} \quad\right. \text { Thus } \\
e^{A b} & =\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} t^{k}=\sum_{k=0}^{1} \frac{1}{k!}\left(P D^{k} P^{-1}\right) t^{k} \\
& =P\left(\sum_{k=0}^{\infty} \frac{1}{k!} D^{k} t^{k}\right) P^{-1}=P e^{D t} P^{-1}
\end{aligned}
$$

and $e^{D t}=\operatorname{diag}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right)$
so $\quad e^{A t}=P \operatorname{diog}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right) P^{-1}$.
i.g. Previously, $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ so $\quad e^{A t}=P e^{D t} P^{-7}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
e^{t}+e^{-t} & e^{t}-e^{-t} \\
t^{t}-e^{-t} & e^{t}+e^{-t}
\end{array}\right)
\end{aligned}
$$

If $x(0)=(1,0)$, thin $x=e^{A t}\binom{1}{0}=\frac{1}{2}\binom{e^{t}+e^{-t}}{e^{t}-e^{-t}}$ as we saw earlier?

Inner Products
Goal. Add structure to a vector space then will allow us th defer length and angles.
Defer Let V be a vector space over $F=\mathbb{R}$ or C. An inner product on V is a function

$$
\begin{aligned}
\langle,\rangle: V \times V & \longrightarrow F \\
(x, \gamma) & \longmapsto\langle x, y\rangle
\end{aligned}
$$

si. $\forall x, y, z \in V, c \in F$,
(1) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ and $\langle c x, y\rangle=c\langle x, y\rangle$
(2) $\overline{\langle x, y\rangle}=\langle y, x\rangle$
(3) $\langle x, x\rangle \in \mathbb{R}_{\geqslant 0}$ and $\langle x, x\rangle=0$ if $x=0$.

Note $F=\mathbb{R}$: non-degereratu pritive definite form
$F=\mathbb{C}$: non -degenerate thermitian form
eng. . The ordmery dot product on $\mathbb{R}^{n}: \quad V=\mathbb{R}^{n}$,

$$
\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle=x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}
$$

- The ordinary inner product on $\mathbb{C}^{*}: \quad V=\mathbb{C}^{n}$

$$
\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle=x \cdot \bar{y}=\sum_{i=1}^{n} x_{i} \bar{y}_{i}
$$

- wet $V=C_{\mathbb{R}}([0,1])=\{f:[0,1] \rightarrow \mathbb{R} \mid f(t)\}$,

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

TPS Chuck pos def.

- $V=\mathbb{R}^{2}, \quad\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=3 x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{2}+4 x_{2} y_{2}$

For poi di, $\left\langle\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle=3 x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}$

$$
\begin{aligned}
& =3\left(x_{1}^{2}+\frac{4}{3} x_{1} k_{2}+\frac{4}{3} x_{2}^{2}\right) \\
& =3\left(\left(x_{1}+\frac{2}{3} x_{2}\right)^{2}-\frac{4}{9} x_{2}^{2}+\frac{4}{3} x_{2}^{2}\right) \\
& =3\left(\left(x_{1}+\frac{2}{3} x_{2}\right)^{2}+\frac{8}{9} x_{2}^{2}\right) \geq 0
\end{aligned}
$$

with equality if $x_{1}=x_{2}=0$.

Math 201 Wenk 11 , Wrd
For $A \& V$, defim the conjugate
$V=M_{\text {rax }}(F)$. For $A \in V$, defime the conjugates
frenspose of A by $A^{*}:=\bar{A}^{\top}$ whure () takes the epe conjugater of each entry of A. Defin

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)=\sum_{i=1}^{n}\left(B^{*} A\right)_{i i}
$$

Nofs $m=1$ gores ugual inner product. Pos def: exarcise.
Prop ut (V, t, η) be an inner product ipace. Then
(1) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
(1) $\langle x, y\rangle\rangle=\bar{c}\langle x, y\rangle$
(3) $\langle 0, y\rangle=0$
(4) if $\langle x, y\rangle=\langle x, z\rangle \quad \forall x \in V$ then $y=z$.

Pf $(1):\langle x, y+z\rangle=\overline{\langle y+z, x\rangle}=\overline{\langle y, x\rangle}+\overline{\langle z, x\rangle}$

$$
=\langle x, y\rangle+\langle x, z\rangle
$$

(21, (3): exc.
(4): $(x, y\rangle=\langle x, z\rangle \forall \Rightarrow\langle x, y-z\rangle \cdot 0 \quad \forall x$

In particular, for $x=y-z$ get $\langle y-z, y-z\rangle=0$, 5 y $y-z=0$.

Length, distance, componunts, projections, angles
Define For $\left(V_{1} S, \lambda\right)$ co inner product space, the norm (or length) of $x \in V$ is $\|x\|=\sqrt{\langle x, x\rangle} \in \mathbb{R}$. Two vectors are orthogonal (or perpendicular) if $\langle x, y\rangle=0$. A unit valor x has $\|x\|=1$ $\Leftrightarrow\langle x, x\rangle=1$.
1.g. $\left(\mathbb{R}^{n}, \cdot\right)$ has $\|x\|=\mathbb{R}_{6} \sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
$\left(\mathbb{Q}^{n}, \cdot\right)$ has $\|z\|=\sqrt{z_{1} \overline{z_{1}}+\cdots+z_{n} \bar{z}_{n}}$

$$
=\sqrt{\left|z_{1}\right|^{2}+\cdots+\left|z_{\alpha}\right|^{2}}
$$

Note If $z_{j}=x_{j}+i y_{j}, x_{j}, y_{j} \in R$, then

$$
\|z\|=\sqrt{x_{1}^{2}+y_{1}^{2}+\cdots+x_{n}^{2}+y_{n}^{2}}
$$

The (Pythagoras?) Let $(V, C\rangle$,$) be an inner product space$ and suppose $\langle x, y\rangle=0$. Then $\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2}$.
Pf W_{u} have $\left.\langle y, x\rangle: \overline{\langle x, y}\right\rangle=\overline{0}=0$ as well. Thus

$$
\begin{aligned}
\|x+y\|^{2}=\langle x+y, x+y\rangle & =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2} .
\end{aligned}
$$

For $x, y \in V, x=(x-a y)+c y$, and $c y$ is in the "direction" of y.

Find c s.t. $\langle x-c y, y\rangle=0$

$$
\begin{aligned}
& \Leftrightarrow\langle x, y\rangle-c\langle y, y\rangle=0 \\
& \Leftrightarrow c=\frac{\langle x, y\rangle}{\langle y, y\rangle}=\frac{\langle x, y\rangle}{\|y\|^{2}}
\end{aligned}
$$

(as long as $y \neq 0$).
Defer The component of x along y is the scalar

$$
c=\frac{\langle x, y\rangle}{\|y\|^{2}}
$$

The orthogonal projuction of x along y is $c y=\frac{5 x, y)}{\|y\|^{2}} y$
e.g. $x=(3,2), y=(5,0) \in \mathbb{R}^{2}$. Thur

$$
c=\frac{(x, y)}{\|y\|^{2}}=\frac{(3,2) \cdot(5,0)}{(5,0) \cdot(5,0)}=\frac{15}{25}=\frac{3}{5}
$$

and $c y=\frac{3}{5}(5,0)=(3,0)$

Prop (1) $\|c x\|=|c| H x \|$
(2) $\|x\|=0$ if $x=0$
(3) $|\langle x, y\rangle\rangle \mid \leqslant\|x\|\|y\| \quad$ (cauchy-Schwartz)
(4) $\|x+y\| \leq\|x\|+\|y\| \quad$ (triangh)

If $(1),(2):$ exe.
(3): If $y=0$, done, so asiume $y \neq 0$ and lut $c=\frac{\langle x, y\rangle}{\|y\|^{2}}$.

Thum $x-c y \perp y$ so, by Pithagoras,

$$
\begin{aligned}
& \|x-c y\|^{2}+\|c y\|^{2}=\|x\|^{2} \\
\Rightarrow & \|c y\|^{2} \leq\|x\|^{2} \\
\Rightarrow & \|x\| \geqslant\|c y\|=\mid c\| \| y \|=\frac{|\langle x, y\rangle|}{\|y\|} \\
\Rightarrow & \|x\|\|y\| \geqslant|\langle x y\rangle| .
\end{aligned}
$$

$$
\begin{align*}
(4):\|x+y\|^{2} & =\langle x+y, x+y\rangle=\|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle+\|y\|^{2} \\
& \left.=\|x\|^{2}+\langle x, y\rangle+\overline{\langle x-y y}\right\rangle+\|y\|^{2} \\
& =\|x\|^{2}+2 R e(\langle x, y\rangle)+\|y\|^{2} \quad(z+\bar{z}=2 R e(z)\} \\
& \leq\|x\|^{2}+2|\langle x y\rangle|+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \quad \text { (GS) } \\
& =(\|x\|+\|y\|)^{2} \tag{C-5}
\end{align*}
$$

Duff. The distance between $x, y,{ }^{6} \mathrm{~V}$ is

$$
d(x, y):=\|x-y\| .
$$

Prop (1) $d(x, y)=d(y, x)$
(2) $d(x, y) \geqslant 0$ with equality if $x=y$
(3) $\quad d(x, y) \leq d(x, z)+d(z, x)$.

Angles $(V,\langle\rangle$,$) inner product space over F=\mathbb{R}$. (not $\mathbb{C})$
 Deft. The angle θ between $x, y \in V$ is

$$
\begin{gathered}
\theta=\arccos \left(\frac{\langle x, y\rangle}{\|x\|\|y\|}\right) . \\
\text { Thur }\langle x, y\rangle=\|x\|\|y\| \cos \theta .
\end{gathered}
$$

Rob. By $C=5,|\langle x, y\rangle| \leq\|x\|\left\|_{y}\right\|$, so
$-1 \leq \frac{\langle x, y\rangle}{\|x\|\|y\|} \leq 1$ and arecos makes since.

$$
\cdot \cos \theta=\left\langle\frac{x}{\|\times\|}, \frac{y}{n_{y} \|}\right\rangle
$$

unit vert for in direction of x.

Math 201 brock 12, Monday
Gram-Schmidt
Let $(V,<, 2)$ be an inner product space oar $F=\mathbb{R}$ or \mathbb{C}.
Def n Let $5 \subseteq V$. Then S is an orthogonal subset of V if $\langle u, v\rangle=0$ for $a l l u \notin v \in S$. If S is an ortheqomal subset of V and $\| u l l=1$ for all $u \in S$, then S is an orthonormal subset of V.
ag. . The standard basis $2, \ldots$, en for F^{n} is orthonormal with respect to the standard inns product a F^{n}.

- $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal wort stdinnar product on \mathbb{R}^{2}

Prop L Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be an orth goral set of nonzero vectors in V, and let $y^{E} \operatorname{span} 5_{i}$. Then

$$
y=\sum_{j=1}^{k} \frac{\left\langle y_{i}, v_{j}\right\rangle}{\left\langle v_{j}, v_{j}\right\rangle} v_{j}=\sum_{j=1}^{k} \frac{\left\langle y_{j} v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}
$$

Pf Say $y=\sum_{i=1}^{k} a_{i} v_{i}$. Then for $j=1, \ldots, k$

$$
\left\langle y, v_{j}\right\rangle=\left\langle\sum_{i=1}^{k} a_{i} v_{i}, v_{j}\right\rangle=\sum_{i=1}^{L} a_{i}\left\langle v_{i}, v_{j}\right\rangle=a_{j}\left\langle v_{j}, v_{j}\right\rangle .
$$

Hence $a_{j}=\frac{\left\langle y_{i} v_{j}\right\rangle}{\left\langle v_{j}, v_{i}\right\rangle}$.
Cor Lat $S \leq V_{k}$ be orthenaranal, $S=\left\{v_{1}, \ldots, v_{h}\right\}, y \in \operatorname{span} S$.
Then $y=\sum_{j=1}^{L}\left\langle y, v_{j}\right\rangle v_{j} . \square$
Cor If $S=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ is orthogonal, them 5 is linearly ind. Pf If $\sum_{i=1}^{k} a_{i} v_{i}=0$ than for $j=1, \ldots, k$,

$$
0^{i=1}=\left\langle 0, v_{j}\right\rangle=\left\langle\sum_{i=1}^{k} a_{i} v_{i}, v_{j}\right\rangle=a_{j}\langle\underbrace{\Rightarrow a_{j}=0 \quad \forall j .}_{\left.\neq 0 \Rightarrow v_{j}, v_{j}\right\rangle}
$$

Math 201
Weat 12, Monday
e.g. \mathbb{R}^{2} w/ std imer proe,

$$
u=\frac{1}{\sqrt{2}}(1,1), \quad v=\frac{1}{\sqrt{2}}(1,-1)
$$

Ther $\beta=\{u, v\}$ is an or thonormal basis for \mathbb{R}^{2}.
Q what are the coords of $y=(4,7)$ wrt β ?
A (TPS)

$$
\begin{aligned}
y & =\langle y, u\rangle u+(y, v) v \\
& =(4,7) \cdot \frac{1}{\sqrt{2}}(1,1) u+(4,7) \cdot \frac{1}{\sqrt{2}}(1,-1) v \\
& =\frac{11}{\sqrt{2}} u-\frac{3}{\sqrt{2}} v
\end{aligned}
$$

Indued, $\frac{11}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}(1,1)-\frac{3}{\sqrt{2}} \frac{1}{\sqrt{2}}(1,-1)=\left(\frac{11}{2}, \frac{11}{2}\right)-\left(\frac{3}{2},-\frac{3}{2}\right)=(4,7)$
Gram-Schmidt
Baby cosu: given $w_{1}, w_{2} \in V$, find or thogome v_{1}, v_{2} s.t.

$$
\operatorname{span}\left\{w_{1}, w_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\} .
$$

Idea: Let $v_{1}=w_{1}$, thon "straightes out " w_{2} to crate v_{2} :

Here $c=\frac{\left\langle\omega_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}$ is the component of w_{2} along v_{1}.
Gram-Schmidt Orthagonalization Algsrithm:
$I_{\text {pput }} S=\left\{w_{1}, \ldots, w_{n}\right\}$, a lin ind subsect of V.

- Let $r_{1}=w_{1}$.
- For $k=2,3, \ldots, n$, defim

$$
v_{k}=w_{k}-\sum_{i=1}^{\sum_{k=1}} \frac{\left\langle w_{k}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

(I.e. subtract orthog prog'ns of w_{k} alang previsusty found v_{i}.)

Output: $S^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$ ar orflozonal rit with sparn 5^{\prime}-spans

Math 201 Week 12, Monday
Pf by induction or n. For $n=1, V$. Assume it works for some $n \geq 1$. Them $s_{p s, m}\left\{v_{1, \ldots}, v_{\infty}\right\}=\operatorname{span}_{n}\left\{w_{1, \ldots m}, w_{n+1}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ orthoyinal. Than

$$
v_{n+1}=\omega_{n+1}-\sum_{i=1}^{\infty} \frac{\left\langle\omega_{n+1,}, v_{i}\right.}{\left\|v_{i}\right\|^{2}} v_{i}
$$

If $v_{n+1}=0$, then $w_{n+1} \in \operatorname{span}\left\{v_{1, \ldots}, v_{n}\right\}=\operatorname{spmn}\left\{w_{1, \ldots}, w_{n}\right\}, \boldsymbol{x}, 50$ $v_{n+1} \neq 0$. For $j=1, \ldots, n$,

$$
\begin{aligned}
\left\langle v_{n+1}, v_{j}\right\rangle & =\left\langle w_{n+1}-\sum_{i=1}^{n} \frac{\left\langle w_{n+1}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}, v_{j}\right\rangle \\
& =\left\langle\omega_{n+1}, v_{j}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle\omega_{n+1}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}\left\langle v_{i}, v_{j}\right\rangle \\
& =\left\langle\omega_{n+1}, v_{j}\right\rangle-\frac{\left\langle w_{n+1}, v_{i}\right\rangle}{\left\langle v_{j} \|^{2}\right.}\left\langle v_{j}, v_{j}\right\rangle \\
& =0 .
\end{aligned}
$$

is $\left\{v_{10}, \ldots, v_{n+1}\right\}$ orthogonal. It remains to shaw this set has the correct span. Since $\left\{v_{i}, \ldots, v_{n+1}\right\}$ lin ind and $\operatorname{span}\left\{v_{1}, \ldots, v_{m n}\right\} \subseteq \operatorname{pean}\left\{v_{1}, \ldots, v_{n}, \omega_{n+1}\right\} \leq \operatorname{span}\left\{w_{1, \ldots, \ldots}, w_{m, 1}\right\}$ get equality $($ both $(n+1)-$ dim' 1$)$. $\quad \square$
Cor Evary nontrivid fin dim'l inner product space has an orthonormal bases.
eg. $\left.V=\mathbb{R}_{\leq 1} t_{x}\right),\left\langle f_{1 g}\right\rangle=\int_{0}^{1} f(t \mid g(t) d t$.
Apply G-S to $\left\{L_{1} x\right\}$ to git orthonormal basil.
deter $\langle 1, x\rangle: \int_{0}^{1} t d t=\frac{1}{2} \neq 0$, so not orthogenic.
GS: $v_{1}=1$.

$$
\left.v_{2}=x-\frac{\left\langle x_{1} v_{1}\right\rangle}{4 v_{1} \|^{2}} v_{1}=x-\frac{\langle x, 1\rangle}{\left\|_{1}\right\|^{2}} \right\rvert\,=x-\frac{1 / 2}{\int_{2}^{1} d t}=x-\frac{1}{2} .
$$

Have $\left\|v_{1}\right\|=\sqrt{\int_{0}^{1} d t}=1$

$$
\begin{aligned}
\left\|v_{2}\right\| & =\sqrt{\langle x-1 / 2, x-1 / 2\rangle} \\
& =\sqrt{\int_{0}^{1}(t-1 / 2)^{2} d t} \\
& =\sqrt{1 / 12}
\end{aligned}
$$

Se an orthonormal basis for V is $\left\{1, \frac{1}{\sqrt{12}}(x-1 / 2)\right\}$.

Math 201 Wuh 12, Wedmesday Orthogonal complements and pojutions

Defn Tha (external) direct sum of vector rpaces U, W res a field F is then $U \oplus W:=U \times W$ with coordonatewise sca(br moit + vutor addition:

$$
\begin{array}{ll}
\lambda(u, w)=(\lambda u, \lambda w) & \\
(u, w)+\left(u^{\prime}, w\right)=\left(u+u^{\prime}, w+w^{\prime}\right) & u, u^{\prime} \in U, \\
& w, w^{\prime} \in W, \lambda \in F
\end{array}
$$

Prop Let U, W be subspacer of a vuetor spence V over ${ }_{F}$ s.t. $u+v=v$ and $u n w=\{0\}$. Ther

$$
u \oplus \omega \stackrel{\cong}{\Longrightarrow} v
$$

$$
(u, w) \longmapsto u+w .
$$

Now lat $(V,()$,$) be an inner prodent spans ower F=\mathbb{R}$ or \mathbb{C}. Bufn Lat $\varnothing \subset \leqslant 5 \leq V$. The orthozonal complemment of S is

$$
S^{\perp}=\{x \in V \mid\langle x, y\rangle=0 \quad \forall y \in S\}
$$

Ex. 5^{+}is a subspoce of V.
Prop Suppons dom $V=n$ and $S=\left\{v_{1},-, V_{b}\right\}$ is an orf /honormal sutset of V. (1) 5 can be extended to an orithonormal basis $\left\{v_{1, n-}, v_{n}\right\}$ of V.
(2) If $W=$ span 5 , fhem $5^{\prime}=\left\{v_{n+1-1, \ldots,} v_{n}\right\}$ is an ortho normal basit for W^{\perp}.
(3) If $W \subseteq V$ is any subspoce, than

$$
\operatorname{dim} W+\operatorname{dim} W^{i}=\operatorname{din} V=n .
$$

(4) If $W \subseteq V$ is amy subspence, then $\left(W^{\perp}\right)^{\perp}=W$.

If (1) Exiend to a basis thin cupply G-S.
(2) 5^{\prime} is linind as its a subsect of a basis. $5^{\prime} \subseteq W^{2}$ by orthogonality of $\left\{v_{1, \ldots}, v_{n}\right\}$. Thas spen $S^{\prime} \leq W^{+}$. For $x \in W^{\prime}, x=\sum_{i=i}^{n}\left\langle x, v_{i}\right\rangle v_{i}=\sum_{i k o n}^{n}\left\langle x, v_{i}\right\rangle v_{i} \in \operatorname{spen} S^{\prime}$.

Math 201 Wee 12, Wedrusdey 2
(3) Choos am orthonormal (basis for W then apply (1), (2).
(4) Have $\left(W^{1}\right)^{+}=\left\{x \in V \mid\langle x, y)=0 \quad \forall y \leqslant W^{+}\right\} \geq W$.

By (3 (3), $\operatorname{dim}\left(W^{1}\right)^{2}=n=\operatorname{dim} W^{+}=\operatorname{dim} W$, s they arc equal. $\left[\frac{L}{}\right.$

$$
V=W \oplus W^{+} \text {. Ire. } \forall y \in V \quad \exists!u \in W, z \in W^{+} \text {rt. } y^{2} u+z \text {. }
$$

Def Define u to be the orthogonal projection of y onto W. If u_{1}, \ldots, u_{k} orthonormal basis of w, then

$$
u=\sum_{i=1}^{k}\left(y, u_{i}\right) u_{i} .
$$

侯 By $G-5$, J orthonormal basis u_{1}, \ldots, u_{k} of W. Defin $u=\sum_{i=1}^{k}\left\langle y u_{i}\right\rangle u_{i}$ and $z=y-u$. Thin $u \cdot W$ and $y: u+z$ for $z=y-u$. Further, for $j=1, \ldots, 2 k$,

$$
\begin{aligned}
\left\langle\left(u_{j}\right\rangle\right. & =\left\langle y-u_{,} u_{j}\right\rangle \\
& =\left\langle y \rho u_{j}\right\rangle-\left\langle\sum_{i=1}^{k}\left\langle y_{i} u_{i}\right\rangle u_{i}, u_{j}\right\rangle \\
& =\left\langle y, u_{j}\right\rangle-\sum_{i=1}^{\infty}\left\langle y, u_{i}\right\rangle\left\langle u_{i}, u_{j}\right\rangle \\
& =\left\langle y, u_{j}\right\rangle-\left\langle y_{1}, u_{j}\right\rangle\left\langle u_{j}, u_{j}\right\rangle \\
& =0, \text { so } z \in W^{\downarrow} .
\end{aligned}
$$

For uniqueness, suppose $\exists u^{\prime} \in W, z^{\prime} \in W^{1}$ s.t. $y=u+z=u^{\prime}+z^{\prime}$. Thur $u-u^{\prime}=z-z^{\prime} \in W \cap W^{\perp}=\{0\}$.
cor The orthogonal propicution u of y onto W is the closest vector in W to y : $k y$-all $\leq A y-w H \forall W \& W$ with equality of $u=w$.
Pf Write $y=u+z$ with $u \in W, z \in W^{+}$. Lat $w o W$. Than $u-w \in W$. $y-u \in W^{i}$. So $u-W$ and $z: y-u$ arse orflogonath

Math 201 Week is Wedrusdry 1
By Pythagoras,

$$
\begin{aligned}
\|y-w\|^{2} & =\|(u+z)-w\|^{2} \\
& =\|(u-w)+z\|^{2} \\
& =\|u-w\|^{2}+u z \|^{2} \\
& \rightrightarrows\|z\|^{2} \\
& =\|y-u\|^{2} .
\end{aligned}
$$

Equally iff $H u-w l^{2}=0$, im. iff $u=w$. I
e.g. $V=\mathbb{N B}^{3}$ (std inaer prod. For artluegenal prön ento xy-plaue, take $\left\{e_{1}, e_{s}\right\}$ as orthonirmal bansi. The rogn of $u=(x, y, z) \in \mathbb{R}^{3}$ onto thes plaw is

$$
\left(u \cdot l_{1}\right) e_{1}+\left(u \cdot l_{2}\right) e_{2}=(x, y, 0)
$$

The distanes of a to the $x y$-plane is

$$
\|u-(x, y, 0)\|=\|(0,0, z)\|=|z| .
$$

$(V,\langle\rangle$,$) an inner product space over F=\mathbb{R}$ or \mathbb{C}.
$W \subseteq V$ fin-dimil subspace $\Rightarrow V=W \oplus W^{\perp}$, se every $y^{\Rightarrow} V$ hat a unique exproxsizon of the form $y=u+z, u \in W, z \in W^{1}$. If $\left\{u_{2}, \ldots, u_{k}\right\}$ is an orthonormal bares for w, then

$$
u=\sum_{i=1}^{k}\left\langle_{y}, u_{i}\right\rangle u_{i}
$$

and u is the point in w closest to g.
e.g. In R^{2}, final the line closest to the thru points $(0,6)$, $(1,0),(2,0)$. For $y=a x+b$ to pass through the pls,ue could mud

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)\binom{a}{b} \\
\left.A \quad x \quad \begin{array}{l}
6 \\
0 \\
0
\end{array}\right) \\
y \quad y
\end{gathered}
$$

There is no x satisfying this eq'n so instead we look for $x=(a, b)$ minimizing the error $e:=\|y-A x\|$.
Define we: $=\operatorname{im}(A)$. Thin to minimize e, we mad to computer the projection of $y=(6,0,0)$ onto ht. Fo this, we nued an orthonormal basis of w. . Begin $w /$ columns of $A+$ apply Gran-Schmidt: $v_{1}=(0,1,2)$

$$
\begin{aligned}
v_{2} & =(1,1,1)-\frac{(1,1,1) \cdot(0,1,2)}{(0,1,2) \cdot(0,1,2)}(0,1,2) \\
& =(1,1,1)-\frac{3}{5}(0,1,2) \\
& =\left(1, \frac{2}{5},-\frac{1}{5}\right) .
\end{aligned}
$$

Then $u_{1}=\frac{v_{1}}{\| v_{1} H}=\frac{1}{\sqrt{5}}(0,1,2)$
$u_{2}=\frac{v_{2}}{U v_{21}}=\sqrt{\frac{5}{6}}\left(1 . \frac{2}{5},-\frac{1}{5}\right)$ form an orthonormal basin sf L/.

The projection of y onto W is

$$
\begin{aligned}
u & =\left\langle y, u_{1}\right\rangle u_{1}+\left\langle y, u_{2}\right\rangle u_{2} \\
& =(6,0,0) \cdot \frac{1}{\sqrt{5}}(0,1,2) u_{1}+(6,0,0) \cdot \sqrt{\frac{5}{6}}\left(1, \frac{2}{5},-\frac{1}{5}\right) u_{2} \\
& =6 \sqrt{\frac{5}{6}} u_{2} \\
& =6 \sqrt{\frac{5}{6}} \sqrt{\frac{5}{6}}\left(1, \frac{2}{5},-\frac{1}{5}\right) \\
& =(5,2,-1) .
\end{aligned}
$$

Since $(5,2,-1) \in W=\operatorname{im} A$, un can solve

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{c}
5 \\
2 \\
-1
\end{array}\right) \quad \text { and get } a=-3, b=5 \text {. }
$$

So the lin of best $f i t$ is $y=-3 x+5$.
Adjoint ($\omega / 0$ proof)
If $f \in \mathcal{L}(V), \exists!f^{+} \in \mathcal{L}(V)$, the adjoint off satisfying

$$
\langle f(x), y\rangle=\left\langle x, f^{\dagger}(y)\right\rangle
$$

$\forall x, y \in V$. If f is represented by a matrix A wit soma ordered basis, thin f^{+}is aped by $A^{+}\left(n i s A^{+}\right)$, then conjugate transport of $A:\langle A x, y\rangle=\left\langle x, A^{+} y\right\rangle$.
utility: given $A \in M_{m=n}(F)$ and $y \in F^{m}$, want to compete $x \in F^{n}$ minimizing $l_{y}-A x H$.
Lemma $\operatorname{rank}\left(A^{+} A\right)=\operatorname{rank}(A)$.
Pf Not $A^{+} A \in M_{\text {nun }}(F)$. By ramkimullity,

$$
\begin{aligned}
\operatorname{rank}(A) & =n-\operatorname{dim}(\operatorname{ker} A) \\
\operatorname{rank}\left(A^{+} A\right) & =n-\operatorname{dim}\left(\operatorname{ker} A^{+} A\right)
\end{aligned}
$$

so it suffices for how don ter $A=\operatorname{dom}$ her $A^{+} A$.

If $x \in$ her A, then $A x=0 \Rightarrow A^{+} A x=A^{+} 0=0$ so x other $A^{+} A$.
This her $A \subseteq$ herr $A^{+} A$.
If $x \in \operatorname{ler} A^{+} A$, them $A^{+} A x=0 \Rightarrow 0=\langle x, 0\rangle=\left\langle x, A^{+} A x\right\rangle=\langle A x, A x\rangle$. By pos def, $A x=0$, so $x \in$ bur A, proving the opposite inclusion.
Cor II $A \in M_{\text {mane }}(F)$ has rank n, then $A^{+} A$ is invertible.
Prop Given $A \in M_{m \times n}(F)$ and $y \in F^{m}$, thurs exits $x_{0} \in F^{n}$ such that $\left\|_{y}-A x_{0}\right\| \leq\|y-A x\| \quad \forall x \in F^{*}$. For this x_{0}, wo have $A^{+} A x_{0}=A^{+} y$. If $\operatorname{ramh}(A)=n$, than $x_{0}=\left(A^{+} A\right)^{-1} A^{+} y$.
If Wart $A x_{0}$ closet to y so looking for the groin of y onto $\operatorname{in}(A) \equiv F^{n}$. This pros wistence. Now want + find $x_{0} \in F^{n}$
1.6. $y=A x_{0} r z$ with $z: y-A x_{0} \in(\operatorname{im} A)^{\perp}$.

$$
\begin{align*}
y-A x_{0} c(i m A)^{+} & \Leftrightarrow\left\langle A x, y-A x_{0}\right\rangle=0 \quad \forall x \in F^{n} \\
& \Leftrightarrow\left\langle x, A^{+}\left(y-A x_{0}\right)\right\rangle=0 \quad \forall x \in F^{n} \\
& \Leftrightarrow A^{+}\left(y-A x_{0}\right)=0 \\
& \Leftrightarrow A^{+} A x_{0}=A^{\top} y .
\end{align*}
$$

L.g. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 2 & 1\end{array}\right) \cdot y=\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right), \operatorname{rank} A=2$.

$$
\begin{aligned}
A^{+} A=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right), \quad\left(A^{+} A\right)^{-1}=\frac{1}{6}\left(\begin{array}{cc}
3 & -3 \\
-3 & 5
\end{array}\right) \\
\Rightarrow x_{0}=\left(A^{+} A\right)^{-1} A^{+} y=\frac{1}{6}\left(\begin{array}{cc}
3 & -3 \\
-3 & 5
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right)=\binom{-3}{5} .
\end{aligned}
$$

Rub This method avoids computing an orthonormal baser. beret.

Least Squares Minimizing $N_{y}-A x h$ ：s called she method of post squares．Imagine that at time 製 t_{i} we are measuring a quantity $y_{i} \in F, i=1, \ldots, n$ ．Want the＂best＂lin $y=a x+6$ ． Them we wont $a, b \in F$ SIt．$y_{i}=a t_{i}+b$ for each $i, \therefore l$

$$
\begin{gathered}
\left(\begin{array}{cc}
t_{1} & 1 \\
\vdots & \vdots \\
t_{n} & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
A \quad x \quad y
\end{gathered}
$$

Seek to minimise error My $^{\text {S }}$ A All，or equivalently $\| y$－$A x \|^{2}$ ．But

$$
U y-A x \|^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(a t_{i}+b\right)\right)^{2}
$$

The terms $y_{i}-\left(a t_{i}+b\right)$ ard vertical distances

$$
\frac{y_{a t_{i}+b}^{y_{i}}}{\substack{a_{2}}}
$$

and we are minimizing their squerss．

Math 201 week 13, Weberday 1
Principal Component Analysis
Suppose we take n measurements $f m$ variables (with real values) Each measurement is a veto in \mathbb{R}^{m}, and our n ease ruments ce then n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{m}$

The mean (or average) of these vectors is . $\left\{\begin{array}{l}\text { point } \\ \text { cloud }\end{array}\right.$

$$
\mu:=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
$$

Note The i - the component of μ is just the average value of the i-th variable: $\mu_{i}=\frac{1}{n}\left(x_{1 i}+\cdots+x_{n i}\right)$.
Q How can we mimic other important statiltics?
2.g. For $a_{1}, \ldots, a_{n} \in \mathbb{R}$, their variance is

$$
\operatorname{var}(a)=\frac{1}{n-1}\left(\left(a_{1}-\mu\right)^{2}+\cdots+\left(a_{n}-\mu\right)^{2}\right)
$$

If u e also measure $b_{1}, \ldots, b_{n} \in \mathbb{R}$, the covariance $b / w a_{i}, b_{i}$ is

$$
\operatorname{cov}(a b)=\frac{1}{n-1}\left(\left(a_{a}-\mu_{a}\right)\left(b_{1}-\mu_{b}\right)+\cdots+\left(a_{n}-\mu_{a}\right)\left(b_{n}-\mu_{b}\right)\right)
$$

- Varisune measures how much the a_{i} differ from their mean and its square root is the stengled duration.
- Covariance measures how the $a_{i}+b_{i}$ depend on each other; E.g. negation cos arises when large a_{i} prridith small b_{i} (relation to means).
Going back to multivariate setting. define

$$
B=\left(\begin{array}{llll}
x_{1}-\mu & x_{2}-\mu & \cdots & x_{n}-\mu
\end{array}\right)
$$

the mon matrix with it column $x_{0}-\mu$. This is the reentering of the data so the mean is 0 .
Defoe The covariance matrix $S=\frac{1}{n-1} B R^{T}$.
Note $S \in M_{m \times m}(\mathbb{R})_{\text {is symmetric. }}$.

Math 201 Week is, Wednesday 2
e.g. $x_{1}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right) \quad x_{2}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right) \quad x_{1}=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right) \quad \mu=\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3} \\ \mu_{4}\end{array}\right)$

$$
\left.B=\left\lvert\, \begin{array}{lll}
a_{1}-\mu_{1} & b_{1}-\mu_{1} & c_{1}-\mu_{1} \\
a_{2}-\mu_{2} & b_{2}-\mu_{2} & c_{1}-\mu_{2} \\
a_{3}-\mu_{3} & b_{3}-\mu_{3} & c_{3}-\mu_{4} \\
a_{4}-\mu_{4} & b_{4}-\mu_{4} & c_{4}-\mu_{4}
\end{array}\right.\right)
$$

Thun $j_{11}=\frac{1}{3-1}\left(\left(a_{1}-\mu_{1}\right)^{2}+\left(b_{1}-\mu_{1}\right)^{2}+\left(c_{1}-\mu_{1}\right)^{2}\right)=$ variance of Similarly, $S_{i i}=$ variance of i-th variable. first variable.

Also $\quad s_{z_{1}}=\frac{1}{3-1}\left(\left(a_{1}-\mu_{1}\right)\left(a_{2}-\mu_{2}\right)+\left(b_{1}-\mu_{1}\right)\left(b_{2}-\mu_{2}\right)+\left(c_{1}-\mu_{1}\right)\left(a_{2}\left(-\mu_{2}\right)\right)\right.$

$$
=\text { covariance of first and suond variables. }
$$

Similarly, $S_{i j}=$ cor of i th $x j$ th wars.
Defoe The total variance is $\operatorname{tr}(S)=\sum$ var of variables.
lg. $m=2$ Observe: s_{11} large, 5_{22} small covariance small

$$
S=\left(\begin{array}{cc}
95 & 1 \\
1 & 5
\end{array}\right) \quad \text { (total var } 100 \text {) }
$$

$$
S=\left(\begin{array}{ll}
50 & 40 \\
40 & 50
\end{array}\right)
$$

Goal Reugnize the similarity of thar dater sits with linear algebra.

Spectral Then If $A \in M_{n \times n}(\mathbb{R})$ and $A=A^{\top}$, them A is orthogonally diagonelzable with real eigenvalues. Ina. $\exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ and orthogonal nonzero vector $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ st. $A v_{i}=\lambda_{i} v_{i}$.
If Later.
Note For $B \in M_{\text {max }}(\mathbb{R})$, $B B^{\top}$ and $B^{\top} B$ ard symmetric real matrices to which then spectral them applies.
Prop ${ }^{\circ}{ }^{T}$ and $B^{\top} B$ share the same nonzero eigenvalues.

$$
B^{\top} B v=\lambda v .
$$

Mult on left by B to get

$$
B B^{T}(B v)=\lambda(B v) .
$$

Hence λ is an rigewalus of B^{T} with eigenvector $B V$.
(Indued, $B v \neq 0$ since $\left.B^{\top} B_{v}=\lambda v \neq 0.\right)$

$$
\text { Similarly } B B^{\top} w=\lambda \omega \Rightarrow B^{\top} B\left(B^{\top} w\right)=\lambda\left(B^{\top} \omega\right)
$$

so $B^{\circ}{ }^{\top}$, $B^{\top} B$ have some nonzero eigenvalues.
TPY What if B is 500×2 ?
(Find eigenvalues of 2×2 matrix $B^{\top} B$. These ard esjemvates of $B B^{T}$ (a $500 \times 500^{\circ}$ matrix) and all others are O.)
Pop The evgenvaluli of $B B^{\top}$ and $B^{\top} B$ are all nonnegative.
阬 Take v an eigenvector of $B^{\top} B$ with eigenvalue λ. Then

$$
\begin{array}{rl|l}
\left\|B_{v}\right\|^{2} & =(B v) \cdot(B v)=(B v)^{\top}(B v) & \\
& \text { Since }\|B v\|^{2} \geqslant 0 \text { and } \\
& =v^{\top}\left(B^{\top} R\right)_{v} & \\
& =v^{\top}(\lambda v) & \\
& =\lambda v^{\top} \neq 0, \text { must have } \\
& =\lambda\|v\|^{2} . & \lambda \geqslant 0 .
\end{array}
$$

Recall n measurements of m variables swarded as vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{m}$ have mean

$$
\mu=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
$$

mean-centered data matrix $B \in M_{m \times n}(\mathbb{R})$ with i-th colum $x_{i}-\mu$ and covariance matrix

$$
S=\frac{1}{n-1} B B^{\top} \in M_{m \times m}(R)
$$

5 is symmetric, so the spectral theorem n land corollary on maforicus $B B^{T}$) imply that 5 has nonnegative real eigenvalues

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{m} \geqslant 0 .
$$

Let n_{1}, \ldots, u_{m} be the corresponding
orthogonal
The vectors $u_{1}, \ldots u_{m}$ are the primeval components of tin data.
Note total variance $T=T(5)=\lambda_{1}+\cdots+\lambda_{m}$.

- The direction (unit vector) us (the first principal delruction) accounts for $\frac{\lambda_{1}}{T}$ of the total variance. The second primeipal direction $u_{2} \frac{T}{}$ arcounts for $\frac{\lambda_{2}}{T}$ of the total variance. Etc.
- Thus un points in the "worst significant" direction yo the debt set.
- Amongst u_{1}^{+}, u_{2} points in the most significant direction. Eft.

Fact The lime spanned by u_{1} minimizes orthogonal distanced from line to print cloud (compere to least squares). Suppoon we are measuring 10 variables andelthe $T=100$, $\lambda_{1}=90.5, \lambda_{2}=8.9$. Thin $\lambda_{3}, \ldots, \lambda_{10} \leq 0.1$ and the data set in \mathbb{R}^{10} has 99.4% of ts total variance explained by span $\left.\left\{m_{3}\right\} u_{2}\right\}$.

