MATH 113: DISCRETE STRUCTURES HOMEWORK DUE WEDNESDAY WEEK 10

Problem 1. A women's clinic has four doctors, and each patient is assigned to one of them. If a patient gives birth between 8A.M. and 4P.M., then her chance of being attended by her assigned doctor is $3 / 4$; otherwise it is $1 / 4$. What is the probability that a patient is attended by her assigned doctor when she gives birth?
Problem 2. At a certain university, a randomly selected student who has just enrolled has a 66% chance of graduating in four years, but if she successfully completes all freshmen courses in her first year, this chance goes up to 90%. Among those failing to complete at least one freshman course in their first year, the 4 -year graduation rate is 50%. What is the percentage of all students who do not complete all freshman courses in their first year?
Problem 3. Let us throw a six-sided die $n-1$ times, and for $1 \leq i \leq n-1$, denote by A_{i} the event that throw i results in an even number. Let A_{n} denote the event that the sum of all the events is even.
(a) Let $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ be a k-element subset of \underline{n} where $1 \leq k \leq n-1$. Prove that

$$
P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right)=\frac{1}{2^{k}}=P\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right) .
$$

(b) Prove that $P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\frac{1}{2^{n-1}}$.
(c) Are the events A_{1}, \ldots, A_{n} fully independent?

