MATH 113: DISCRETE STRUCTURES MONDAY WEEK 8 HANDOUT

Recall that C_{n} is the number of unlabeled full binary trees with $n+1$ leaves, and that

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

for $n \geq 0$ (and $C_{0}=1$).
Problem 1. A Dyck path of length $2 n$ is a monotonic lattice path in $[0, n]^{2}$ starting from $(0,0)$ and ending at (n, n) which never goes above the diagonal. Prove that there are C_{n} Dyck paths of length $2 n$. (Hint: Let D_{n} be the number of such Dyck paths. Show that D_{n} satisfies the same recurrence as C_{n}.)

Dyck paths also give a proof of the formula

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Proof. Recall that there are $\binom{2 n}{n}$ monotonic lattice paths from $(0,0)$ to (n, n). We aim to partition the monotonic paths into $n+1$ subsets of equal size, where precisely one of the subsets is the collection of Dyck paths. This will prove that $C_{n}=\binom{2 n}{n} /(n+1)$, as desired.

We define the exceedance of a monotonic lattice path to be its number of vertical steps above the diagonal. The exceedance of a monotonic lattice path from $(0,0)$ to (n, n) is between 0 and n (inclusive), and the Dyck paths are precisely those monotonic lattice paths with exceedance 0 . Let P be the set of monotonic lattice paths from $(0,0)$ to (n, n) and let E_{i} be the set of paths with exceednace i; then $P=E_{0} \cup E_{1} \cup \cdots \cup E_{n}$ is clearly a partition of P. If we can show that $\left|E_{0}\right|=\left|E_{1}\right|=\left|E_{2}\right|=\cdots=\left|E_{n}\right|$, then we will be done.

Given a path $p \in E_{i}$, write $p=B r A u C$ where r is the first right step below the diagonal and u is the first up step touching the diagonal after r. Then B is a path above the diagonal with exceedance $j \leq i, A$ is a path below the diagonal, and C is the reamining path with exceedance $i-j$. Switch $B r$ and $A u$ to produce $f(p)=A u B r C$. The exceedances of $A, u B r$, and C are $0, j+1$, and $i-j$, respectively. (Draw some pictures and check this!) Thus $f(p) \in E_{i+1}$.

Given a path $q \in E_{i+1}$, write $q=A u B r C$ where u is the first up step above the diagonal and r is the first right step touching the diagonal after u. Define $g(q)=B u A d C$ and check that $g(q) \in E_{i}$. Finally, check that $f: E_{i} \rightarrow E_{i+1}$ and $g: E_{i+1} \rightarrow E_{i}$ are inverse to each other.
Problem 2. Prove that we can also express C_{n} as

$$
C_{n}=\frac{(2 n)!}{n!(n+1)!}=\binom{2 n}{n}-\binom{2 n}{n+1}
$$

