MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 7 HANDOUT

Problem 1. Let $G=(V, E)$ be a graph with connected subgraphs $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ such that $V_{1} \cap V_{2} \neq \varnothing$. Prove that G is connected.

Call a graph acyclic if it does not contain any subgraphs which are cycles. A tree is a connected acyclic graph. A disconnected acyclic graph is called a forest.
Problem 2. How many edges are there in a tree with n vertices? Prove your assertion (by induction?).
Problem 3. Prove that a graph G is a tree if and only if there is a unique path between any two vertices of G.

A leaf of a tree is a vertex of degree 1 . Suppose T is a tree with vertex set $\underline{n}=\{1,2, \ldots, n\}$. The Prüfer code of T is the sequence of length $n-2$ with entries in \underline{n} generated by the following algorithm: At step i, remove the leaf with the smallest label and set the i-th entry of the Prüfer sequence equal to the label of the leaf's neighbor. After step $n-2$, the end of the algorithm, one is left with a single edge joining two nodes.

For instance, the Prüfer code of the following graph is ($3,3,4,4,5,5$).

Problem 4. Draw several trees on the whiteboards and determine their Prüfer codes.
Problem 5. Create an algorithm (i.e., sequence of instructions) which turns a Prüfer code in \underline{n} of length $n-2$ into a tree with vertex set \underline{n} such that the Prüfer code \rightarrow tree and tree \rightarrow Prüfer code processes are inverses. Conclude that there are n^{n-2} trees with vertex set \underline{n}. This is called Cayley's Theorem.

