MATH 113: DISCRETE STRUCTURES MONDAY WEEK 7 HANDOUT

Problem 1. A complete graph on n vertices, denoted K_{n}, has every possible edge. Draw pictures of K_{3}, K_{4}, and K_{5}. How many edges are there in a complete graph on n vertices? For a general graph $G=(V, E)$, make an inequality relating $|V|$ and $|E|$.
Problem 2. A graph $G=(V, E)$ is called bipartite if $V=A \cup B$ with $A \cap B=\varnothing$ and there are no edges between vertices in A and similarly for B (so only edges between a vertex in A and a vertex in B are allowed). The complete bipartite graph on $p+q$ vertices, denoted $K_{p, q}$, has $|A|=p,|B|=q$, and all possible edges between A and B.
(a) Draw pictures of $K_{2,3}$ and $K_{3,5}$.
(b) How many edges are in $K_{p, q}$?
(c) If $|A|=p$ and $|B|=q$ with $A \cap B=\varnothing$, how many (not necessarily complete) bipartite graphs have vertex set $A \cup B$?

Problem 3. Suppose $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are graphs.
(a) When should a function $f: V \rightarrow V^{\prime}$ be considered a "map" $G \rightarrow G^{\prime}$?
(b) When should we consider G and G^{\prime} to be "the same" graph?

