MATH 113: DISCRETE STRUCTURES MONDAY WEEK 7 HANDOUT

Problem 1. A complete graph on *n* vertices, denoted K_n , has every possible edge. Draw pictures of K_3 , K_4 , and K_5 . How many edges are there in a complete graph on *n* vertices? For a general graph G = (V, E), make an inequality relating |V| and |E|.

Problem 2. A graph G = (V, E) is called *bipartite* if $V = A \cup B$ with $A \cap B = \emptyset$ and there are no edges between vertices in A and similarly for B (so only edges between a vertex in A and a vertex in B are allowed). The *complete bipartite graph on* p + q vertices, denoted $K_{p,q}$, has |A| = p, |B| = q, and all possible edges between A and B.

- (a) Draw pictures of $K_{2,3}$ and $K_{3,5}$.
- (b) How many edges are in $K_{p,q}$?
- (c) If |A| = p and |B| = q with $A \cap B = \emptyset$, how many (not necessarily complete) bipartite graphs have vertex set $A \cup B$?

Problem 3. Suppose G = (V, E) and G' = (V', E') are graphs.

- (a) When should a function $f: V \to V'$ be considered a "map" $G \to G'$?
- (b) When should we consider G and G' to be "the same" graph?