MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 6 HANDOUT

Problem 1 (Continued from Monday). Prove that

$$
\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots+\binom{0}{n}=F_{n+1} .
$$

Problem 2. Extend the Fibonacci sequence backwards (with negative indices) via the relation $F_{n}=$ $F_{n+2}-F_{n+1}$. Write out the terms $F_{-5}, F_{-4}, F_{-3}, \ldots, F_{3}, F_{4}, F_{5}$ (and maybe a few more in either direction). Come up with a conjecture about the relation between Fibonacci numbers with negative indices and positive indices. Prove your conjecture.
Problem 3. Compute the following sums:

$$
\begin{aligned}
& F_{1} \\
& F_{1}+F_{3} \\
& F_{1}+F_{3}+F_{5} \\
& F_{1}+F_{3}+F_{5}+F_{7} \\
& F_{1}+F_{3}+F_{5}+F_{7}+F_{9}
\end{aligned}
$$

Develop and prove a conjecture about the value of $G_{n}=\sum_{k=1}^{n} F_{2 k-1}$.
Problem 4. Develop and prove a conjecture about the value of $F_{n-1} F_{n+1}-F_{n}^{2}$.

