MATH 113: DISCRETE STRUCTURES MONDAY WEEK 6 HANDOUT

Problem 1. In how many ways can you fill a $2 \times n$ chessboard with 2×1 dominoes? (Each domino must cover exactly two squares, but may be placed horizontally or vertically.) Work out the answer directly for several small values of n, make a conjecture about the overall pattern, then prove your conjecture.

Problem 2. Mark the first entry in some row of Pascal's triangle (this is a 1). Move one step east and one step northeast, and mark the entry there. Repeat this until you exit the triangle. Compute the sum of the entries you marked.
(a) Repeat this process for several other rows of Pascal's triangle. Guess what pattern is emerging.
(b) Express your guess in terms of a sum of binomial coefficients and prove that it is true.

Problem 3. Extend the Fibonacci sequence backwards (with negative indices) via the relation $F_{n}=$ $F_{n+2}-F_{n+1}$. Write out the terms $F_{-5}, F_{-4}, F_{-3}, \ldots, F_{3}, F_{4}, F_{5}$ (and maybe a few more in either direction). Come up with a conjecture about the relation between Fibonacci numbers with negative indices and positive indices. Prove your conjecture.

