MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 3 HANDOUT

Recall that for natural numbers n, k, the number

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!},
$$

read " n choose k," is the number size k subsets of an n-element set. If $n \geq k$, this can also be written as $\frac{n!}{k!(n-k)!}$.

Problem 1. Compute the sums

$$
\left.\begin{array}{r}
\binom{1}{0} \\
\binom{2}{0}+\binom{2}{2} \\
\binom{4}{0}+\binom{3}{2} \\
\binom{4}{2}+\binom{4}{4} \\
\binom{6}{0}+\binom{5}{2}+\binom{5}{4} \\
\binom{7}{0}+\binom{6}{4}+\binom{6}{6} \\
2
\end{array}\right)+\binom{7}{4}+\binom{7}{6}, ~ \$
$$

and develop a conjecture regarding the value of

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots
$$

where the sum's final term is $\binom{n}{n-1}$ or $\binom{n}{n}$ depending on whether n is odd or even, respectively. Give a combinatorial argument proving that your conjecture is true.

Problem 2. Compute the sums

$$
\left.\begin{array}{r}
\binom{0}{0}^{2} \\
\binom{1}{0}^{2}+\binom{1}{1}^{2}+\binom{2}{1}^{2}+\binom{2}{2}^{2} \\
\binom{3}{0}^{2}+\binom{3}{1}^{2}+\binom{3}{2}^{2}+\binom{3}{3}^{2} \\
\binom{5}{0}^{2}+\binom{4}{1}^{2}+\binom{4}{2}^{2}+\binom{4}{3}^{2}+\binom{4}{4}^{2} \\
2
\end{array}\right)^{2}+\binom{5}{3}^{2}+\binom{5}{4}^{2}+\binom{5}{5}^{2}
$$

by hand and develop a conjecture regarding the value of

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n-1}^{2}+\binom{n}{n}^{2} .
$$

Give a combinatorial argument proving that your conjecture is true.
Problem 3. How many ways are there to write a nonnegative integer m as a sum of r positive integer summands? (We decree that the order of the addends matters, so $3+1$ and $1+3$ are two different representations of 4 as a sum of 2 nonnegative integers.) Develop a conjecture and prove it.

