MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 2 HANDOUT

Problem 1. If $a_{1}, a_{2}, \ldots, a_{k} \in\{0,1\}$, we write $\left(a_{1} a_{2} \ldots a_{k}\right)_{2}$ for the integer represented by this string in base 2 ; in other words,

$$
\left(a_{1} a_{2} \ldots a_{k}\right)_{2}=a_{1} 2^{k-1}+a_{2} 2^{k-2}+\cdots+a_{k-1} 2^{1}+a_{k} 2^{0} .
$$

(a) How do you express $2 \cdot\left(a_{1} a_{2} \ldots a_{k}\right)_{2}$ in binary?
(b) Find a closed formula for the n-th term in the sequence $1_{2}, 11_{2}, 111_{2}, 1111_{2}, \ldots$.

Problem 2. Suppose A is a nonempty finite set containing n elements and that a is a particular element of A. How many subsets of A contain a ? (Try to solve this problem both with a direct count, and also by producing a bijection between $\{B \subseteq A: a \in B\}$ and a set which you've already counted.)

The second solution method for Problem 1 is an important one in combinatorics. Underlying it is the fact that two sets X and Y have the same cardinality if and only if there is a bijection $X \rightarrow Y$. If we know how to count the elements of Y and we can produce a bijection $X \rightarrow Y$, then we know X has the same number of elements!

Problem 3. Determine the number of ordered pairs (A, B) where

$$
A \subseteq B \subseteq\{1,2, \ldots, n\}
$$

Problem 4. In what number system can you easily enumerate the above pairs? Use this number system to enumerate such pairs when $n=3$.
Problem 5. Generalize the above two problem to finite "chains of subsets" $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ where

$$
A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{m} \subseteq\{1,2, \ldots, n\}
$$

