MATH 113: DISCRETE STRUCTURES MONDAY WEEK 2 HANDOUT

The floor function $\rfloor: \mathbb{R} \rightarrow \mathbb{R}$ sends $x \in \mathbb{R}$ to the greatest integer less than or equal to x. For instance, $\lfloor 4.5\rfloor=4,\lfloor 17\rfloor=17$, and $\lfloor-\pi\rfloor=-4$.

Problem 1. Draw a graph of \rfloor and check that it is a function. What is the image of the floor function? Is it injective or surjective?

Problem 2. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{1-n}{2} & \text { if } n \text { is odd }\end{cases}
$$

Show that f is a bijection.
Problem 3. Suppose A and B are finite sets and $f: A \rightarrow B$ is injective. What can we say about $|A|$ and $|B|$? What if f is surjective?

Problem 4. Let $F(A, B)$ denote the set of functions with domain A and codomain B. If $|A|,|B|<\infty$, what is $|F(A, B)|$? (In other words, how many functions are there with domain A and codomain B ?)

Suppose A and B are sets and $f: A \rightarrow B$ is a function. If $A^{\prime} \subseteq A$, then the image of A^{\prime} in B is defined as

$$
f\left(A^{\prime}\right):=\left\{f(a) \mid a \in A^{\prime}\right\} .
$$

Note that $f(A)=\operatorname{im}(f)$. If $B^{\prime} \subseteq B$, then the preimage of B^{\prime} in A is defined as

$$
f^{-1}\left(B^{\prime}\right):=\left\{a \in A \mid f(a) \in B^{\prime}\right\} .
$$

In other words, $f^{-1}(C)$ consists of everything in A pushed into C by f.
Problem 5. Determine $f(\varnothing)$ and $f^{-1}(\varnothing)$. More generally, when is $f^{-1}\left(B^{\prime}\right)=\varnothing$?
Problem 6. For $A_{1}, A_{2} \subseteq A, B_{1}, B_{2} \subseteq B$, and $f: A \rightarrow B$, prove that

$$
\begin{aligned}
f\left(A_{1} \cup A_{2}\right) & =f\left(A_{1}\right) \cup f\left(A_{2}\right), \\
f\left(A_{1} \cap A_{2}\right) & \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right), \\
f^{-1}\left(B_{1} \cup B_{2}\right) & =f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right), \text { and } \\
f^{-1}\left(B_{1} \cap B_{2}\right) & =f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right) .
\end{aligned}
$$

Find an example to show that equality does not necessarily hold in the second line.

