MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 2 HANDOUT

For $n \in \mathbb{N}$, let $\underline{n} = \{1, 2, ..., n\}$. In particular $\underline{1} = \{1\}, \underline{2} = \{1, 2\}, \underline{3} = \{1, 2, 3\}$, etc. Note that $\underline{0} = \emptyset$ by convention.

Problem 1. There are k^n length n strings where each entry in the string comes from a set with k elements. Earlier, you proved that there are k^n functions with domain \underline{n} and codomain \underline{k} . Is this a coincidence? Explain.

We take the viewpoint that a permutation is a bijection from a set to itself. This can also be though of as a reordering of the set. If $\pi : \underline{n} \to \underline{n}$ is a bijection, it reorders \underline{n} from 1, 2, ..., n to $\pi(1), \pi(2), ..., \pi(n)$. This also gives us the analogy string:function::reordering:permutation. In particular, we may view permutations of \underline{n} as length n strings with entries in \underline{n} in which no 'letters' are repeated.

Problem 2. Why does this prove that $n! \leq n^n$? What do you think $n!/n^n$ approaches as n goes to ∞ ?

Define the *sign* of a permutation $\pi : \underline{n} \to \underline{n}$ by the formula

$$\operatorname{sgn}(\pi) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Problem 3. Write out the formula for $sgn(\pi)$ when n = 3. Why is it the case that $sgn(\pi) = \pm 1$ in this case? Show that $sgn(\pi) \in {\pm 1}$ for all n.

Note that we can compose permutations to get new permutations when thinking of them as bijective functions $\underline{n} \rightarrow \underline{n}$.

Problem 4. For π , τ permutations of \underline{n} , prove that $\operatorname{sgn}(\pi \circ \tau) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\tau)$.