MATH 113: DISCRETE STRUCTURES
 FRIDAY WEEK 2 HANDOUT

For $n \in \mathbb{N}$, let $\underline{n}=\{1,2, \ldots, n\}$. In particular $\underline{1}=\{1\}, \underline{2}=\{1,2\}, \underline{3}=\{1,2,3\}$, etc. Note that $\underline{0}=\varnothing$ by convention.

Problem 1. There are k^{n} length n strings where each entry in the string comes from a set with k elements. Earlier, you proved that there are k^{n} functions with domain \underline{n} and codomain \underline{k}. Is this a coincidence? Explain.

We take the viewpoint that a permutation is a bijection from a set to itself. This can also be though of as a reordering of the set. If $\pi: \underline{n} \rightarrow \underline{n}$ is a bijection, it reorders \underline{n} from $1,2, \ldots, n$ to $\pi(1), \pi(2), \ldots, \pi(n)$. This also gives us the analogy string:function::reordering:permutation. In particular, we may view permutations of \underline{n} as length n strings with entries in \underline{n} in which no 'letters' are repeated.

Problem 2. Why does this prove that $n!\leq n^{n}$? What do you think $n!/ n^{n}$ approaches as n goes to ∞ ?

Define the sign of a permutation $\pi: \underline{n} \rightarrow \underline{n}$ by the formula

$$
\operatorname{sgn}(\pi)=\prod_{1 \leq i<j \leq n} \frac{\sigma(j)-\sigma(i)}{j-i} .
$$

Problem 3. Write out the formula for $\operatorname{sgn}(\pi)$ when $n=3$. Why is it the case that $\operatorname{sgn}(\pi)= \pm 1$ in this case? Show that $\operatorname{sgn}(\pi) \in\{ \pm 1\}$ for all n.

Note that we can compose permutations to get new permutations when thinking of them as bijective functions $\underline{n} \rightarrow \underline{n}$.

Problem 4. For π, τ permutations of \underline{n}, prove that $\operatorname{sgn}(\pi \circ \tau)=\operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\tau)$.

