MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 12 HANDOUT

The book says that integers a and b are congruent modulo another integer m (denoted $a \equiv b$ $(\bmod m))$ if a and b have the same remainder upon division by m. In your homework, you will prove that this is equivalent to $m \mid a-b$, and you should assume this result for the rest of today's class.

Question 1. When is $a \equiv b(\bmod 2) ? a \equiv b(\bmod 1) ? a \equiv b(\bmod 0)$?
Problem 2. Prove that $\equiv(\bmod m)$ is an equivalence relation on \mathbb{Z}. What are the associated equivalence classes? How many equivalence classes are there?

When considering the equivalence relation $\equiv(\bmod m)$ on \mathbb{Z}, we write \bar{a} for the equivalence class of a. (We elide m from the notation; it should be clear from context.) We call \bar{a} the congruence class of a modulo m. We write $\mathbb{Z} / m \mathbb{Z}=\mathbb{Z} /(\equiv(\bmod m))$ for the set of congruence classes modulo m.

Problem 3. Define addition an multiplication of equivalence classes in $\mathbb{Z} / m \mathbb{Z}$. Show that for every $\bar{a} \in \mathbb{Z} / m \mathbb{Z}$ there exists $\bar{b} \in \mathbb{Z} / m \mathbb{Z}$ such that $\bar{a}+\bar{b}=\overline{0}$.

Let's now shift gear and discuss the dynamics of addition in $\mathbb{Z} / m \mathbb{Z}$. Fix $\bar{a} \in \mathbb{Z} / m \mathbb{Z}$. Make a directed graph ${ }^{1} G(\bar{a}, m)$ with vertex set $\mathbb{Z} / m \mathbb{Z}$ such that (\bar{b}, \bar{c}) is an edge if and only if $\bar{c}=\bar{b}+\bar{a}$.
Problem 4. Draw $G(\bar{a}, m)$ for a germane collection of \bar{a} and m.
Problem 5. Make a conjecture regarding the shape of $G(\bar{a}, m)$. Prove it.

[^0]
[^0]: ${ }^{1}$ The edges in a directed graph have a source and target, indicated by an arrow. Thus the edges in a directed graph are encoded by ordered pairs of vertices, with first entry the source, and second entry the target.

