MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 12 HANDOUT

In §6.8 you learned that there are commutative, associative operations $+, \cdot$ on $\mathbb{Z}/n\mathbb{Z}$ and that + admits an inverse - such that $\overline{a} - \overline{a} = \overline{0}$. When n is prime, everything in $\mathbb{Z}/n\mathbb{Z}^{\times} = \mathbb{Z}/n\mathbb{Z} \setminus \{\overline{0}\}$ admits a multiplicative inverse as well, *i.e.*, for each $\overline{a} \in \mathbb{Z}/n\mathbb{Z}^{\times}$, there exists $\overline{a}^{-1} \in \mathbb{Z}/n\mathbb{Z}^{\times}$ such that $\overline{a} \cdot \overline{a}^{-1} = \overline{1}$. We sometimes write $\overline{1}/\overline{a}$ for \overline{a}^{-1} and $\overline{a}/\overline{b}$ for $\overline{a}\overline{b}^{-1}$.

Problem 1. Our previous version of Fermat's little theorem said that if p was prime and $1 \le a \le p-1$, then $p \mid a^p - a$. Of course, $p \mid 0 = 0^p - 0$, so this holds for $0 \le a \le p-1$ as well.

- (a) Check that this is equivalent to $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.
- (b) Suppose $a \not\equiv 0 \pmod{p}$. Prove that $a^{p-1} \equiv 1 \pmod{p}$.
- (c) For p > 2, what are the possible values of $a^{(p-1)/2} \mod p$? (Note that p 1 is even when p > 2, so (p 1)/2 makes sense.)
- (d) For $a \in \mathbb{Z}$ such that $a \not\cong 0 \pmod{p}$, define $o_p(a)$ (the order of a modulo p) to be the smallest positive integer such that $a^{o_p(a)} \equiv 1 \pmod{p}$. Since $a^{p-1} \equiv 1 \pmod{p}$, we know that $1 \leq o_p(a) \leq p-1$. Prove that $o_p(a) \mid p-1$.
- (e*) Prove that there exists $a \in \mathbb{Z}$ such that $o_p(a) = p 1$.
- (f) Assume (e*) (which is a challenge problem you can try outside of class) and take $a \in \mathbb{Z}$ such that $o_p(a) = p 1$. Show that each a^n , $1 \le n \le p 1$, is in a distinct congruence class modulo p and thus the values of a^n cycle through all the nonzero congruence classes mod p with period p 1.¹

Problem 2. Make a multiplication table for $\mathbb{Z}/7\mathbb{Z}^{\times}$. Select a congruence class and circle all its occurrences in the table. Observe that this is a solution to the non-capturing rooks problem on a 6×6 chessboard. Does it work for other congruence classes? For $\mathbb{Z}/p\mathbb{Z}^{\times}$ and $(p-1) \times (p-1)$ chessboards in general? Why?

Problem 3. How many squares are there mod p? *i.e.*, how large is $\{\overline{x}^2 \mid \overline{x} \in \mathbb{Z}/p\mathbb{Z}^{\times}\}$? What is the probability that $x^2 \equiv a \pmod{p}$ will have a solution? Suppose $x^2 \equiv a \pmod{p}$ has a solution; how many solutions does it have? In the diagonal of the multiplication table for $\mathbb{Z}/p\mathbb{Z}^{\times}$, why does $\overline{1}$ always and only appear in the top left and bottom right corner?

Problem 4. Your vitamin regimen requires you to take *Doctor Snoggleswarf's Health Elixir* [®] every five days. You take the first dose in the bottle on a Sunday and the final dose on a Thursday. You're not sure how many doses you took, but you know that there are at least 50 doses in a bottle. What is the minimum number of doses you took?

¹An algebraist would say that $\mathbb{Z}/p\mathbb{Z}^{\times}$ is a cyclic group of order p-1.