MATH 113: DISCRETE STRUCTURES SUNZI'S THEOREM

The Chinese mathematician Sunzi Suanjing considered the following problem in the 3-rd century C.E. A general arrays his soldiers on the parade grounds. He first organizes them into columns of 3, but there are only 2 soldiers in the final column. He then organizes them into columns of 5, but there are only 3 soldiers in the final column. Finally, he organizes them into columns of 7, and again there are only 2 soldiers in the final column. How many soldiers does the general command?

Using the language of congruences, we can phrase the general's observations as

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}.$$

What (if any) integers x simultaneously satisfy these congruences?

Let us begin by solving the first two congruences, $x \equiv 2 \pmod{3} \equiv 3 \pmod{5}$. By guessand-check, we quickly see that x = 8 is a solution. In fact, if $x \equiv 8 \pmod{15}$, we solve both congruences. Indeed, such x are equal to 15k + 8 for some $k \in \mathbb{Z}$, and $15 \equiv 0$ modulo both 3 and 5.

We now need to solve the congruences $x \equiv 8 \pmod{15} \equiv 2 \pmod{7}$. A little thought reveals that x = 23 works, and the same logic as before shows that $x \equiv 23 \pmod{105}$ gives all solutions (because $105 = 15 \cdot 7$).

This brief exploration indicates the following theorem and its proof.

Theorem 1 (Sunzi's Theorem [née Chinese Remainder Theorem]). Suppose $N = n_1 n_2 \cdots n_k$ and that the n_i are pairwise relatively prime integers (so $gcd(n_i, n_j) = 1$ for $i \neq j$). Then for any integers a_1, \ldots, a_k the system of congruences

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$
$$\vdots$$
$$x \equiv a_k \pmod{n_k}$$

has precisely one solution $x = x_0$ with $0 \le x_0 < N$ and all solutions are of the form $x \equiv x_0 \pmod{N}$.

Proof. We proceed by induction on k. If k = 1, then we may take x to be the remainder of a_1 divided by n_1 and clearly all solutions are of the form $x + n_1r = x + Nr$, $r \in \mathbb{Z}$.

Fix $s \ge 1$ and suppose that all such systems with k = s terms have solutions as described. Now consider a system of s + 1 congruences

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$
$$\vdots$$
$$x \equiv a_s \pmod{n_s}$$
$$x \equiv a_{s+1} \pmod{n_{s+1}}.$$

where the n_i are pairwise relatively prime. Let us first endeavor to solve the first two congruences. Since n_1 and n_2 are relatively prime, there are integers m_1 and m_2 such that $1 = m_1n_1 + m_2n_2$. Construct the number $a_{1,2} = a_2m_1n_1 + a_1m_2n_2$. Since $m_1n_1 = 1 - m_2n_2$, we have $a_{1,2} = a_2(1 - m_2n_2) + a_1m_2n_2 = a_2 + n_2(a_1m_2 - a_2m_2)$. Reducing mod n_2 , we get $a_{1,2} \equiv a_2 \pmod{n_2}$. If we begin with the substitution $m_2n_2 = 1 - m_1n_1$, we similarly get $a_{1,2} \equiv a_1 \pmod{n_1}$. Thus $a_{1,2}$ is a simultaneous solution of the first two congruences. We get all such solutions by considering $x \equiv a_{1,2} \pmod{n_1n_2}$. (The diligent reader should check this.) Thus we can solve the original s + 1 congruences by solving the system

$$x \equiv a_{1,2} \pmod{n_1 n_2}$$
$$x \equiv a_3 \pmod{n_3}$$
$$\vdots$$
$$x \equiv a_{s+1} \pmod{n_{s+1}}$$

with only *s* congruences. Note that all the moduli are relatively prime, so we may invoke the inductive hypothesis, and we are done. \Box

This method of proof is constructive, in that it provides us with a method via which we can solve our system of congruences. By repeated application of the extended Euclidean algorithm, we can eliminate congruences one at a time until we get to a final congruence $x \equiv a_{1,2,...,k} \pmod{N}$, where $a_{1,2,...,k}$ is our solution.

In practice, this is not the fastest way to find a solution. (It requires k - 1 applications of the extended Euclidean algorithm.) Instead, suppose that n_k is the largest of the moduli. There are $N/n_k = n_1 n_2 \cdots n_{k-1}$ numbers x such that $0 \le x < N$ and $x \equiv a_k \pmod{n_k}$. If N/n_k is relatively small, we (or a computer) can simply check if each of these numbers satisfies all k congruences.

As an example, consider the system of congruences $x \equiv 0 \pmod{2} \equiv 1 \pmod{3} \equiv 2 \pmod{5} \equiv 3 \pmod{7}$. The solutions to $x \equiv 3 \pmod{7}$ with $0 \le x < 2 \cdot 3 \cdot 5 \cdot 7 = 210$ are $x = 3, 10, 17, \dots, 206$. Eliminating odd x we are left with x = 10, 24, 38, 52, 66, 80, 94, 108, 122, 136, 150, 164, 178, 192, 206 as possible solutions. It is easy to see that only x = 52, 122, 192 are congruent to 2 (mod 5), and then that only x = 52 is 1 (mod 3). We conclude that the only solutions to this system of congruences are integers $x \equiv 52 \pmod{210}$.

There is a direct way to construct solutions as well. Let $N_i = N/n_i$ for i = 1, ..., k. Observe that N_i and n_i are relatively prime, so we can find M_i and m_i such that

$$1 = M_i N_i + m_i n_i.$$

The reader may check that

$$x = \sum_{i=1}^{k} a_i M_i N_i$$

is a solution to the system of congruences, and thus all solutions are of the form

$$x \equiv \sum_{i=1}^{k} a_i M_i N_i \pmod{N}.$$

This recipe gives us a function

$$f: \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \longrightarrow \mathbb{Z}/N\mathbb{Z}$$
$$(a_1, a_2, \dots, a_k) \longmapsto \sum_{i=1}^k a_i M_i N_i$$

(We have engaged in the standard subterfuge of conflating integers and their congruence classes.) There is another natural function $g : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ sending x to the k-tuple consisting of the reductions of x modulo each n_i . The interested reader may check that these functions are inverse to each other, and thus these sets are in bijection. In fact, these assignment also respect addition and thus are *isomorphisms of abelian groups*, a topic one can explore more fully in Math 332!

Problem 1. Find all solutions to the system of congruences

$$x \equiv 2 \pmod{11}$$
$$x \equiv 3 \pmod{12}$$
$$x \equiv 4 \pmod{13}.$$

Problem 2. Does Sunzi's theorem still hold if we drop the requirement that the n_i are relatively prime? Prove your assertion or provide a counterexample.