MATH 113: DISCRETE STRUCTURES SUNZI'S THEOREM

The Chinese mathematician Sunzi Suanjing considered the following problem in the 3-rd century C.E. A general arrays his soldiers on the parade grounds. He first organizes them into columns of 3 , but there are only 2 soldiers in the final column. He then organizes them into columns of 5 , but there are only 3 soldiers in the final column. Finally, he organizes them into columns of 7 , and again there are only 2 soldiers in the final column. How many soldiers does the general command?

Using the language of congruences, we can phrase the general's observations as

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 5) \\
x \equiv 2 & (\bmod 7) .
\end{array}
$$

What (if any) integers x simultaneously satisfy these congruences?
Let us begin by solving the first two congruences, $x \equiv 2(\bmod 3) \equiv 3(\bmod 5)$. By guess-and-check, we quickly see that $x=8$ is a solution. In fact, if $x \equiv 8(\bmod 15)$, we solve both congruences. Indeed, such x are equal to $15 k+8$ for some $k \in \mathbb{Z}$, and $15 \equiv 0$ modulo both 3 and 5 .

We now need to solve the congruences $x \equiv 8(\bmod 15) \equiv 2(\bmod 7)$. A little thought reveals that $x=23$ works, and the same logic as before shows that $x \equiv 23(\bmod 105)$ gives all solutions (because $105=15 \cdot 7$).

This brief exploration indicates the following theorem and its proof.
Theorem 1 (Sunzi's Theorem [née Chinese Remainder Theorem]). Suppose $N=n_{1} n_{2} \cdots n_{k}$ and that the n_{i} are pairwise relatively prime integers $\left(\operatorname{sog} \operatorname{gcd}\left(n_{i}, n_{j}\right)=1\right.$ for $\left.i \neq j\right)$. Then for any integers a_{1}, \ldots, a_{k} the system of congruences

$$
\begin{array}{cc}
x \equiv a_{1} & \left(\bmod n_{1}\right) \\
x \equiv a_{2} & \left(\bmod n_{2}\right) \\
\vdots & \\
x \equiv a_{k} & \left(\bmod n_{k}\right)
\end{array}
$$

has precisely one solution $x=x_{0}$ with $0 \leq x_{0}<N$ and all solutions are of the form $x \equiv x_{0}(\bmod N)$.
Proof. We proceed by induction on k. If $k=1$, then we may take x to be the remainder of a_{1} divided by n_{1} and clearly all solutions are of the form $x+n_{1} r=x+N r, r \in \mathbb{Z}$.

Fix $s \geq 1$ and suppose that all such systems with $k=s$ terms have solutions as described. Now consider a system of $s+1$ congruences

$$
\begin{aligned}
& x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod n_{2}\right) \\
& \vdots \\
& x \equiv a_{s} \quad\left(\bmod n_{s}\right) \\
& x \equiv a_{s+1} \quad\left(\bmod n_{s+1}\right) .
\end{aligned}
$$

where the n_{i} are pairwise relatively prime. Let us first endeavor to solve the first two congruences. Since n_{1} and n_{2} are relatively prime, there are integers m_{1} and m_{2} such that $1=m_{1} n_{1}+m_{2} n_{2}$.

Construct the number $a_{1,2}=a_{2} m_{1} n_{1}+a_{1} m_{2} n_{2}$. Since $m_{1} n_{1}=1-m_{2} n_{2}$, we have $a_{1,2}=a_{2}(1-$ $\left.m_{2} n_{2}\right)+a_{1} m_{2} n_{2}=a_{2}+n_{2}\left(a_{1} m_{2}-a_{2} m_{2}\right)$. Reducing $\bmod n_{2}$, we get $a_{1,2} \equiv a_{2}\left(\bmod n_{2}\right)$. If we begin with the substitution $m_{2} n_{2}=1-m_{1} n_{1}$, we similarly get $a_{1,2} \equiv a_{1}\left(\bmod n_{1}\right)$. Thus $a_{1,2}$ is a simultaneous solution of the first two congruences. We get all such solutions by considering $x \equiv a_{1,2}\left(\bmod n_{1} n_{2}\right)$. (The diligent reader should check this.) Thus we can solve the original $s+1$ congruences by solving the system

$$
\begin{aligned}
& x \equiv a_{1,2} \quad\left(\bmod n_{1} n_{2}\right) \\
& x \equiv a_{3} \quad\left(\bmod n_{3}\right) \\
& \vdots \\
& x \equiv a_{s+1} \quad\left(\bmod n_{s+1}\right)
\end{aligned}
$$

with only s congruences. Note that all the moduli are relatively prime, so we may invoke the inductive hypothesis, and we are done.

This method of proof is constructive, in that it provides us with a method via which we can solve our system of congruences. By repeated application of the extended Euclidean algorithm, we can eliminate congruences one at a time until we get to a final congruence $x \equiv a_{1,2}, \ldots, k(\bmod N)$, where $a_{1,2, \ldots, k}$ is our solution.

In practice, this is not the fastest way to find a solution. (It requires $k-1$ applications of the extended Euclidean algorithm.) Instead, suppose that n_{k} is the largest of the moduli. There are $N / n_{k}=n_{1} n_{2} \cdots n_{k-1}$ numbers x such that $0 \leq x<N$ and $x \equiv a_{k}\left(\bmod n_{k}\right)$. If N / n_{k} is relatively small, we (or a computer) can simply check if each of these numbers satisfies all k congruences.

As an example, consider the system of congruences $x \equiv 0(\bmod 2) \equiv 1(\bmod 3) \equiv 2(\bmod 5) \equiv$ $3(\bmod 7)$. The solutions to $x \equiv 3(\bmod 7)$ with $0 \leq x<2 \cdot 3 \cdot 5 \cdot 7=210$ are $x=3,10,17, \ldots, 206$. Eliminating odd x we are left with $x=10,24,38,52,66,80,94,108,122,136,150,164,178,192,206$ as possible solutions. It is easy to see that only $x=52,122,192$ are congruent to $2(\bmod 5)$, and then that only $x=52$ is $1(\bmod 3)$. We conclude that the only solutions to this system of congruences are integers $x \equiv 52(\bmod 210)$.

There is a direct way to construct solutions as well. Let $N_{i}=N / n_{i}$ for $i=1, \ldots, k$. Observe that N_{i} and n_{i} are relatively prime, so we can find M_{i} and m_{i} such that

$$
1=M_{i} N_{i}+m_{i} n_{i} .
$$

The reader may check that

$$
x=\sum_{i=1}^{k} a_{i} M_{i} N_{i}
$$

is a solution to the system of congruences, and thus all solutions are of the form

$$
x \equiv \sum_{i=1}^{k} a_{i} M_{i} N_{i} \quad(\bmod N)
$$

This recipe gives us a function

$$
\begin{aligned}
f: \mathbb{Z} / n_{1} \mathbb{Z} \times \mathbb{Z} / n_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} & \longrightarrow \mathbb{Z} / N \mathbb{Z} \\
\left(a_{1}, a_{2}, \ldots, a_{k}\right) & \longmapsto \sum_{i=1}^{k} a_{i} M_{i} N_{i}
\end{aligned}
$$

(We have engaged in the standard subterfuge of conflating integers and their congruence classes.) There is another natural function $g: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}$ sending x to the k-tuple consisting of the reductions of x modulo each n_{i}. The interested reader may check that these
functions are inverse to each other, and thus these sets are in bijection. In fact, these assignment also respect addition and thus are isomorphisms of abelian groups, a topic one can explore more fully in Math 332!

Problem 1. Find all solutions to the system of congruences

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 11) \\
x \equiv 3 & (\bmod 12) \\
x \equiv 4 & (\bmod 13) .
\end{array}
$$

Problem 2. Does Sunzi's theorem still hold if we drop the requirement that the n_{i} are relatively prime? Prove your assertion or provide a counterexample.

