MATH 113: DISCRETE STRUCTURES HOMEWORK FOR WEDNESDAY WEEK 5

Question 1. How many permutations of an n-element set have exactly one fixed point? Take an integer k such that $1 \leq k \leq n$; how many permutations of an n element set have exactly k fixed points?

Question 2. What is wrong with the following inductive "proof" that $D(n)=(n-1)$! for all $n \geq 2$? For $n=2$ the formula holds, so take some $n \geq 3$ and assume that $D(n-1)=(n-2)!$. Let π be a permutation of $\{1,2, \ldots, n-1\}$ with no fixed point. We want to extend it to a permutation π^{\prime} of $\{1,2, \ldots, n\}$ with no fixed point. We choose a number $i \in\{1,2, \ldots, n-1\}$, and we define $\pi^{\prime}(n)=\pi(i), \pi^{\prime}(i)=n$, and $\pi^{\prime}(j)=\pi(j)$ for $j \neq i, n$. This defines a permutation of $\{1,2, \ldots, n\}$, and it's easy to check that it has no fixed point. For each of the $D(n-1)=(n-2)$! possible choices of π, the index i can be chosen in $n-1$ ways; therefore, $D(n)=(n-2)!\cdot(n-1)=(n-1)$!.

