MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 9 HANDOUT

Problem 1. The digits 1, 2, 3, 4 are randomly arranged into two two-digit numbers $\overline{A B}$ and $\overline{C D}$. In this problem you will ultimately determine the expected value of $\overline{A B} \cdot \overline{C D}$.
(a) If two of the digits $1,2,3,4$ are randomly selected (without replacement), what is their expected product?
(b) Write $\overline{A B}$ as a linear combination of the digits A and B. Similarly express $\overline{C D}$ in terms of C and D.
(c) Finally, use linearity of expectation and your answer to (a) to determine $E(\overline{A B} \cdot \overline{C D})$.

Problem 2 (The coupon collector problem). Safeway is running a promotion in which they have produced n coupons and you randomly receive a coupon each time you check out. You passionately hope to one day collect all n coupons. What is the expected number of times T you'll have to check out at the store in order to collect all n ? There's a very clever way to solve this problem with linearity of expectation!
(a) Label the coupons $C_{1}, C_{2}, \ldots, C_{n}$. If $n=4$, a successful collection of all 4 coupons might look like $C_{2} C_{2} C_{4} C_{2} C_{1} C_{3}$. Break the sequence into segments where a segment ends when you receive a new coupon. In the example sequence, the segments are $C_{2}, C_{2} C_{4}, C_{2} C_{1}, C_{3}$. Because it will make our lives easier and Kyle is a benevolent problem-writer, consider these the 0 -th, 1 -st, ..., 3 -rd segments (as opposed to 1 -st through 4 -th). Let X_{k} be the length of the k-th segment, and note that k ranges from 0 through $n-1$. In the example, $X_{0}=1, X_{1}=2$, $X_{2}=2$, and $X_{3}=1$. Express T, the total number of checkouts needed to collect all coupons, as a linear combination of the X_{k}.
(b) Compute p_{k}, the probability that you will collect a new coupon given that you have already collected k of them. After studying the geometric distribution in Lecture 5, we will learn that $E\left(X_{k}\right)=1 / p_{k}$. Compute this value.
(c) Use your answers to (a) and (b) to determine $E(T)$.
(d) Can you say anything about the asymptotic behavior of $E(T)$?

