MATH 113: DISCRETE STRUCTURES WEDNESDAY WEEK 5 HANDOUT

Problem 1. How many derangements π of \underline{n} have $\pi(1)=2$ and $\pi(2)=1$? Fix some $k, 2 \leq k \leq n$; how many derangements π of \underline{n} have $\pi(1)=k$ and $\pi(k)=1$?

Problem 2. How many derangements π of \underline{n} have $\pi(1)=2$ and $\pi(2) \neq 1$? Fix some $k, 2 \leq k \leq n$; how many derangements π of \underline{n} have $\pi(1)=k$ and $\pi(k) \neq 1$?
Problem 3. Let $D(n)$ be the number of derangements of \underline{n}. Use your answers to Problems 1 and 2 to find a formula for $D(n)$ in terms of $D(n-2)$ and $D(n-1)$. Determine $D(1)$ and $D(2)$ by hand and then use your formula to determine $D(n)$ for $n=3,4,5$, and 6 ; check that your answers match with the closed formula given by the inclusion-exclusion principle.

