MATH 113: DISCRETE STRUCTURES MONDAY WEEK 4 HANDOUT

Problem 1. The first diagonal in Pascal's triangle is the constant sequence of 1's. The second diagonal is the sequence of positive integers $1,2,3, \ldots$. What is the third diagonal? The fourth? The n-th?

Problem 2. You proved in your homework that $n^{2}=\binom{n}{2}+\binom{n+1}{2}$. Where do these terms appear in Pascal's triangle? Use your "third diagonal" interpretation from Problem 1 to produce a new proof of this identity.
Problem 3. How many odd numbers are there in the 2018-th row of Pascal's triangle? (To answer this, you may as well find a general formula for the number of odd numbers in the n-th row of Pascal's triangle. [Hint: How many odd numbers in the 2^{k}-th row?])

