MATH 113: DISCRETE STRUCTURES FRIDAY WEEK 1 HANDOUT

Problem 1. Is it always the case that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$? Draw a picture to support your assertion and then prove it.

Cartesian product. There is another operation on sets called the Cartesian product. For sets A and B, their Cartesian product is the set

$$
A \times B=\{(a, b) \mid a \in A, b \in B\},
$$

the collection of ordered pairs where the first element is in A and the second is in B.
Question 2. Big Brothers Big Sisters of Portland has a collection A of 30 adult volunteers and group C of 50 children in need of an adult partner. What is a set which describes the possible adult-child pairings? How many adult-child pairings exist?

Problem 3. Find a general formula for $|A \times B|$ in terms of $|A|$ and $|B|$.
Functions. Functions are ways of relating one set to another. Thus to each element a of a set A, a function assigns exactly one element $b \in B$. If the function's name is f, then we write $b=f(a)$.

The set A is called the domain of f and B is its codomain (aka range). This can all be compactly expressed via the notation $f: A \rightarrow B$.

Each function $f: A \rightarrow B$ has an associated graph $G_{f}=\{(a, f(a)) \mid a \in A\} \subseteq A \times B$. A generic subset $G \subseteq A \times B$ is the graph of a function if and only if for each $a \in A$ there is a unique $b \in B$ such that $(a, b) \in G$. In set theory (which aims to express every mathematical concept in terms of sets), a function is actually defined to be such a special subset of $A \times B$. It's good to be aware of this formalism, but more useful in everyday mathematical practice to think of functions as assignments.
Problem 4. Which of the following subsets of $\{1,2,3\} \times\{a, b, c, d\}$ are functions?
(a) $\{(1, a),(2, b),(3, d)\}$
(b) $\{(2, d),(3, c)\}$
(c) $\{(1, b),(2, c),(3, a),(2, d)\}$
(d) $\{(1, a),(2, a),(3, a)\}$

Problem 5. Suppose $|A|=m,|B|=n$. How many functions $A \rightarrow B$ are there?

